

Comparison of algorithms and encoding schemes for workflow scheduling

Julia Plewa Joanna Sieńko

Supervisor dr inż. Katarzyna Rycerz

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology

9.11.2021

- 1. Goals of our thesis
- 2. Workflow scheduling
- 3. Hybrid algorithms
- 4. Encodings
- 5. QAOA mixers
- 6. Experiment design
- 7. Evaluation of the results
- 8. Conclusions & Future work

- to analyze and improve the existing implementations of the workflow scheduling problem
- to implement and compare **different encoding schemes** and use them to solve larger problems
- to test and compare the performance of **QAOA** and **VQE**
- to experiment with different **classical optimizers**
- to implement and analyze other possible improvements such as QAOA mixers
- to test the efficacy of the implementation using a quantum computer simulator and noise models based on real hardware

Workflow scheduling

• given:

- *N* tasks
- *M* types of machines
- a directed acyclic graph (DAG) describing the order of tasks
- matrix c_{i,j} detailing the cost of executing task i on machine of type j
- matrix $t_{i,j}$ detailing the time of executing task *i* on machine of type *j*
- deadline d
- goal: to minimize the overall cost of executing all tasks while maintaining the required order and meeting the deadline

Objective function

- o matrix X: $X(i, j) = \begin{cases} 1 & \text{if task } i \text{ is to be run on machine of type } j \\ 0 & \text{otherwise} \end{cases}$
 - matrix Y: Y(l,k) determines the value of the *l*th \bigcirc slack on path k

$$O(X,Y) = A \sum_{i}^{N} \sum_{j}^{M} c_{i,j} x_{i,j} + B \cdot \sum_{k}^{R} (d - (\sum_{i}^{N} \sum_{j}^{M} p_{i,k} t_{i,j} x_{i,j} + \sum_{l}^{s_{k}} 2^{l} y_{k,l}))^{2} + C \cdot \sum_{i}^{N} (1 - \sum_{j}^{M} x_{i,j})^{2}$$

Hybrid algorithms – VQE and QAOA

- hybrid algorithms perform classical and quantum computations interchangeably in a loop
- QAOA is in a way a special case of VQE with a focus on combinatorial optimization problems

QAOA (Quantum Approximate Optimization Algorithm)

VQE (Variational Quantum Eigensolver)

Types of encoding

Name	Favorite color		
Eve	red		
Bob	yellow		
Alice	blue		
Jane	green		

one-hot

Name	Prefers red	Prefers green	Prefers blue	Prefers yellow	Prefers pink
Eve	1	0	0	0	0
Bob	0	0	0	1	0
Alice	0	0	1	0	0
Jane	0	1	0	0	0

Name	Favorite color
Eve	10000
Bob	00010
Alice	00100
Jane	01000

binary

Name	Favorite color
Eve	$0_{10} = 000_2$
Bob	$3_{10} = 011_2$
Alice	$2_{10} = 010_2$
Jane	$1_{10} = 001_2$

domain wall

Name	Favorite color
Eve	0000
Bob	1110
Alice	1100
Jane	1000

Types of encoding – comparison

	one-hot	binary	domain wall
number of bits needed to encode <i>N</i> values	N	$\lceil log_2 N \rceil$	N-1
maximum order needed to decode single values	1	$\lceil log_2 N \rceil$	1*
maximum order needed to decode two-variable interactions	2	$2 \left\lceil log_2 N \right\rceil$	2*
number of couplers	N(N-1)	0 if N is a power of 2, otherwise complicated	N-2
intra-variable connectivity	complete	N/A or complicated	linear

QAOA mixers

- QAOA uses a mixing operator (mixer) which is used to move through the configuration space
- with an encoding-specific mixer it's possible to only consider feasible states

Experiments design

- testing 3 various encodings
- testing 3 algorithms variants
 - QAOA with default X mixer (for all 3 encodings)
 - QAOA with custom mixer dedicated for the given encoding (for two encodings)
 - VQE (for all 3 encodings)
- using *p* and *reps* parameter ranging from 1 to 3
- comparing 4 classical optimizers
 - COBYLA
 - L-BFGS-B
 - NELDER-MEAD
 - POWELL
- each experiment was repeated 1000 times
- every repetition measures the quantum circuit 1024 times (shots)
- experiments were conducted on the *Prometheus* supercomputer

Tested problem instances

- smaller problem instance:
 3 tasks, 3 machines types, 1 path,
- larger problem instance: 4 tasks, 3 machines types, 2 paths,
- larger instance chosen to contain more than 1 path and to fit in 15 qubits,
- for the larger instance of the problem, only domain wall and binary encoding were tested,
- experiments count:
 - smaller instance $8 \cdot 3 \cdot 4 = 96$
 - larger instance $5 \cdot 3 \cdot 4 = 60$

Types of solutions

- the **optimal** solution,
- a correct solution a solution that represents a correct mapping and fits within the deadline (note: we do not include the optimal solution in the correct solution count),
- a semi-optimal solution a solution identical to the optimal solution, but with an invalid slack configuration,
- a semi-correct solution a solution identical to some correct solution, but with an invalid slack configuration,
- an incorrect solution a solution that is not optimal, correct, semi-optimal, or semi-correct, meaning it either exceeds the dead-line (incorrect feasible) or corresponds to an invalid configuration (incorrect infeasible, eg. 101 for one-hot).

Solutions orderings

- we introduced two types of orderings
 - naive
 - feasibility-jump
- for naive ordering energies of the worst possible solutions are mixed with the energies of semi-optimal solutions, e.g.

solution type	TASK1 TASK2 TASK3 SLACK
optimal	100 010 001 1100
infeasible	110 000 111 1101
semi-optimal	100 010 001 110 <mark>1</mark>

Fig. Naive ordering

Fig. Feasibility-jump ordering

Solutions ordering impact

- results for smaller problem instance, VQE algorithm and one-hot encoding
- for COBYLA optimizer median of incorrect solutions percentage decreased ~8 times after switching from *naive* to *feasibility-jump* ordering
- therefore we based our experiments on feasibility-jump ordering

ordering and optimizer

Smaller problem – QAOA

- results are presented in the form of box-plots
- one-hot encoding and mixer X returned the biggest number of incorrect solutions
- for default X mixer but domain wall and binary encodings – decrease of incorrect solutions percentage by around half
- one-hot and domain wall encodings with dedicated mixers performed best, median < 10%
- results do not differ between optimizers, they all share similar results pattern

Smaller problem – VQE

- higher variance
- VQE is strongly optimizer dependent
- domain wall and binary encodings performed best
- COBYLA and POWELL optimizers work well
 with VQE
- for POWELL optimizer with domain wall and binary encodings, the median percentage of incorrect solutions was close to 0%, which is the best result among all results for the smaller instance

Smaller problem – QAOA vs VQE

www.agh.edu.pl

Smaller problem – noise models

noise model	optimal	semi-optimal	correct	semi-correct	incorrect	feasible
none	98.5%	1.3%	0.0%	0.1%	0.1%	99.9%
Melbourne	0.0%	0.0%	1.8%	27.7%	70.5%	29.5%
Guadalupe	0.0%	0.2%	6.8%	21.5%	71.5%	28.5%
Tab. Results for one-hot encoding and VQE algorithm						
noise model	optimal	semi-optimal	correct	semi-correct	incorrect	feasible
none	1.7%	1.7%	27.2%	63.9%	5.6%	100.0%
Melbourne	0.0%	0.4%	0.7%	7.4%	91.5%	9.9%

0.3%

7.6%

91.6%

8.7%

Tab. Results for one-hot encoding and QAOA algorithm

0.2%

Guadalupe

0.3%

Larger problem – QAOA vs VQE

mixer and encoding

www.agh.edu.pl

Conclusions

- 1. Alternative encodings to the popular one-hot allow **larger instances** of the optimization problem to be run.
- 2. Optimization problems containing **inequalities** are harder to solve. The ratio of incorrect solutions to the number of solutions increases.
- 3. **Denser encodings** (domain wall and binary) significantly reduce the number of incorrect solutions, which can consequently lead to better results.
- 4. The selection of appropriate model parameters weights is crucial.
- 5. Increasing the **p/reps** parameter did not improve the results.
- 6. Using an encoding-specific mixer in the QAOA algorithm improved the results obtained on the simulator, but on a real quantum computer, **decoherence** from additional gates can make it the QAOA algorithm with the default mixer that gets better results.

Future work

- 1. Do not use slack variables when solving problems with inequalities by introducing e.g. methods based on Augmented Lagrangians.
- 2. Analyze how to choose proper model weights.
- 3. Investigate decoherence caused by the additional gates used by custom QAOA mixers when ran on a real quantum device.
- 4. Investigate other possible improvements to VQE/QAOA such as CVaR (Conditional Value-at-Risk), which replaces the expectation value with a measure that takes into account only the tail of the probability distribution.

Bibliography

- 1. Chancellor N.: Domain wall encoding of discrete variables for quantum annealing and QAOA. In: Quantum Science and Technology, vol. 4(4), p. 045004, 2019, doi: <u>10.1088/2058-9565/ab33c2</u>.
- 2. Glos A., Krawiec A., Zimborás Z.: Space-efficient binary optimization for variational computing, 2020, arXiv: <u>2009.07309</u>.
- 3. Hadfield S., Wang, Z., O'Gorman B., Rieffel E., Venturelli D., Biswas R.: From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. In: Algorithms, vol 12, 2019, doi: <u>10.3390/a12020034</u>.
- 4. Stachoń M.: Solving Optimization problems using Qiskit Aqua. Master's thesis, AGH University of Science and Technology, Kraków, 2020, <u>http://dice.cvfronet.pl/publications/source/MSc_theses/Malgorzata_Stachon_msc.pdf</u>.
- Plewa J., Sieńko J.: Hybrid algorithms for workflow scheduling problem in quantum devices based on gate model. Master's thesis, AGH University of Science and Technology, Kraków, 2021. http://dice.cvfronet.pl/publications/source/MSc theses/JPlewa JSienko msc.pdf.
- 6. Tomasiewicz D.: Analysis of D'Wave 2000Q Applicability for Job Scheduling Problems. Master's paper, AGH University of Science and Technology, Kraków, 2020,

http://dice.cyfronet.pl/publications/source/MSc_theses/Dawid_Tomasiewicz_msc.pdf.

 Tomasiewicz D., Pawlik M., Malawski M., Rycerz K.: Foundations for Workflow Application Scheduling on D-Wave System. In: V.V. Krzhizhanovskaya, G. Z'avodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira, eds., Computational Science - ICCS 2020, pp. 516-530. Springer International Publishing, Cham, 2020, doi: <u>10.1007/978-3-030-50433-5_40</u>.