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Quantum bits - Qubits

State vector

|ψ〉 = α|0〉+ β|1〉
α, β ∈ C

|α|2 + |β|2 = 1

basis states in Dirac notation

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
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Multiple Qubits

Tensor product

|φ〉 = |ψ1〉
⊗
|ψ2〉

⊗
· · ·
⊗
|ψn〉

|ψ1〉 = α0|0〉+ α1|1〉
|ψ2〉 = β0|0〉+ β1|1〉

|ψ1〉
⊗
|ψ2〉 =

[
α0

α1

]⊗[
β0

β1

]
=


α0β0

α0β1

α1β0

α1β1

 =

α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉
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Quantum register

n-qubit system state

|φ〉 =
2n−1∑
j=0

αj |j〉n = α0|0〉n + α1|1〉n + · · ·+ α2n−1|2n − 1〉n

αj ∈ C
2n−1∑
j=0

|aj |2 = 1
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Quantum operations

Unitary operator

Any operation on a quantum system can be represented by a
unitary matrix U which operates on its state vector.
The matrix U is unitary, when UU† = U†U = I . U† is a Hermitian
conjugate of U and U† = (U)T = UT , where U denotes a complex
conjugate of matrix U and UT denotes the matrix transposition.

U =

[
a b
c d

]
|ψ〉 =

[
α
β

]
|ψ′〉 = U|ψ〉 =

[
a b
c d

]
·
[
α
β

]
=

[
aα + bβ
cα + dβ

]
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Quantum gates

Name Symbol Matrix

Hadamard H 1√
2

[
1 1

1 −1

]

Pauli-Y Y

[
0 −i
i 0

]

Square Root of Not
√
X 1

2

[
1− i 1 + i

1 + i 1− i

]

Phase Scale (by angle γ) θ

[
e iγ 0

0 e iγ

]

Rotation Z Rz

[
e−i

γ
2 0

0 e i
γ
2

]
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Quantum circuits

Example quantum circuit

x1 X •

x2

Matrix representation of presented circuit

C01(X ⊗ I ) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




=


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
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Simulating Quantum Physics with Computers

It is impossible to represent the results of quantum mechanics with
a classical universal device. [1]

Our only hope is that we’re going to simulate probabilities. [1]
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Problems with Simulation of Quantum Processes

Naive vector-matrix representation memory consumption

Qubit Number 5 10 20 21

State vector 512 B 16 kB 16 MB 32 MB

Operation matrix 16 kB 16 MB 16 TB 64 TB

Memory needed to represent state vector: O(2n).

Memory needed to represent unitary matrix: O(22n).

Modifying quantum state time complexity

Complexity of matrix-vector multiplication requires O(2n)
operations for very sparse matrices, but even O(22n) for others.

Complexity of matrix-matrix multiplication ranges from O(22n) to
O(23n) depending on algorithm and matrix features.
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List of available simulation techniques

Numerical Linear Algebra Methods

Qubit-wise multiplication [11]

P-blocked state representation

Hash Table State Representation

Decision Diagrams

Quantum Multi-Valued Decision Diagrams [20] [19]
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Overview of Quantum Computer Simulators

Simulation Libraries

libquantum [12]
Quantum++ [12]
Qlib for MatLab [13]

Quantum Programming Languages

OpenQASM [14]
QML

Frameworks

Q# [15]
Qiskit [16]
ProjectQ [4]

GUI Simulators

QuIDE [17]
quirk [18]
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Qubit-wise Multiplication

Split the operation on 2n-element vector into smaller matrices

Unitary operation on n-qubit system can be expressed as
composition of simple, one- or two-qubit elementary gates [11]

Example

A = I ⊗ I ⊗ H ⊗ I ⊗ I

ψ = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉

ψ′ = |0〉 ⊗ |0〉 ⊗ H|0〉 ⊗ |0〉 ⊗ |0〉

Memory usage reduction from O(22n) to O(2n).

Avoiding operations on big matrices.
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P-blocked State Representation

p − blocked state [21]

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk
ρi is the state of at most p qubits

each pi state is represented as density matrix 2p × 2p

complexity reduction from O(2n) to O(k22p) (for best case
p = 1 −→ O(4k))

Drawbacks

no entanglements in p + 1 qubits

qubit entanglement tracking algorithm

for the worst case p = n operations on state vector require
O(22n) memory alongside with complications of performed
operations because of entanglement tracking algorithm

Bell states or any m-qubit GHZ state cannot be represented
using this technique
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Hash Table State Representation

Improvement over Qubit-wise Multiplication

State vector is very sparse

Store only non-zero complex values that represent probability
of collapsing to certain quantum state

0

0
1
2

0
1
2

0

− 1√
2

0




ψ =

000

001

010

011

100

101

110

111

Keys Values

2 1
2

4 1
2

6 − 1√
2
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Binary Decision Diagrams

Observation

State vector and operation matrices repeat themselves.

0

0
1
2

0
1
2

0

− 1√
2

0




ψ =

000

001

010

011

100

101

110

111

q0

q1 q1

q2 q2 q2

0 1
2

− 1√
2
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QMDDs as an enhancement over Decision Diagrams

Elementary quantum operations typically affect only a small
number of the qubits of a quantum system.
The transformation matrix/state vector for the whole system
often contains the same pattern repeatedly throughout the
matrix.
Transformation matrices/state vectors are often sparse with
many zero entries frequently appearing in blocks.
Every modification of quantum system, that is represented by
2n × 2n matrix can be partitioned into 4 sub-matrices of
dimension 2n−1 × 2n−1 as follows:

U =

[
U00 U01

U10 U11

]
Every state of quantum system can be represented by vector of
size 2n that can be partitioned into 2 sub-vectors of size 2n−1:

ψ =
[
ψ0 ψ1

]
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QMDDs as an enhancement over Decision Diagrams

0 0 1 0

0 0 0 −i
i 0 0 0

0 1 0 0




00 01 10 11

00

01

10

11

x1
x2

a) Transformation matrix

x1

x2 x2 x2

1 −i 0 i

b) Decision Diagram with
multiple terminal nodes
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QMDDs as an enhancement over Decision Diagrams

x1

0 0

x2

0 0

x2

0 0

1

−i i

c) Decision Diagram with edge
weights

x1

0 0

x2

0 0

1

i

−i

d) Quantum Multiple-Valued
Decision Diagram
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QMDDs as an enhancement over Decision Diagrams

0 0 1 0

0 0 0 −i
i 0 0 0

0 1 0 0
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00
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x1

0 0

x2

0 0

1

i

−i

d) Quantum Multiple-Valued
Decision Diagram
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Quantum Multi-Valued Decision Diagrams - definition

Representation of an rn × rn complex matrix as a rooted
directed acyclic graph.

It has two types of vertices: single terminal vertex and zero or
more non-terminal vertices.

Each non-terminal vertex denotes the partitioning of a matrix
by the application of following equation:

U =

[
N(U00) N(U01)
N(U10) N(U11)

]
∗

[
Û00 Û01

Û10 Û11

]
There is an initial edge pointing to the root vertex with
complex weight representing the QMDD normalization factor.
QMDD is reduced:

No duplicated edges.
All vertices are unique.

Above points are also applicable to states vectors.
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QMDDs - normalization

QMDDs are built and normalized bottom-up.

The non-terminal vertex v is normalized if w(ej) = 1 for the
lowest j for which w(ej) 6= 0 for j being the outgoing edge’s
index.

x1

0 0

x1

0 0

−1

−i

−i i

i
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QMDDs - matrices creation and multiplication

x1

x2

x3 X •

a) Quantum Circuit

x1

0 0

x2

0 0

x3

1

1√
2

−1

b) First gate

x1

0 0

x2

x3

0 0 0

x3

0 0 0

1

c) Second gate

x1

0 0

x2

x3

0 0

x3

0 0

1

1√
2

−1

d) Gates combined

23 / 33



Simulation techniques of quantum computing

QMDDs - multiplication matrix and state vector

qi
×

qi
=

qi
+

qi

U00 U01 U10 U11 ψ0 ψ1 U00 · ψ0 U10 · ψ0 U01 · ψ1 U11 · ψ1

qi
+

qi
=

qi

ψ0 ψ1 φ0 φ1 ψ0 + φ0 ψ1 + φ1
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QMDDs - complexity

Memory

State vector worst case (full binary tree):

nodes: |v | = 1 +
∑i=0

i=0 2i = 2n

complex values on edges: 2 · (2n − 1) + 1 = 2n+1 − 1
approximately twice as many than in array-based solution
only if no redundancies are found

Unitary matrix worst case (full quad-tree):

nodes: |v | = 1 +
∑n−1

i=0 4i = 1 + 4n−1
3

Elementary quantum gates targeting single qubit and arbitrary
number of control qubits require only linear number of nodes

Operations time complexity

Kronecker product: O(|v |)
Multiplying matrices/state vectors: O(n · |v |)
Measuring state vector: O(|v |+ n)
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QMDDs - experimental results

LiqUI [2] QX [3] ProjectQ [4] QuiDDPro [5] QMDD
Computation #Qubits Time[s] Memory[MB] Time[s] Memory[MB] Time[s] Memory[MB] Time[s] Memory[MB] #Nodes Time[s] Memory[MB] #Nodes

Entanglemnet 22 3.53 193.33 0.42 200.47 1.08 152.41 0.04 14.93 45 <0.01 48.02 43
23 4.09 248.25 0.80 396.94 0.49 248.01 0.04 14.92 47 <0.01 48.03 45

31 0.04 14.93 63 <0.01 48.11 61
100 0.14 15.98 201 <0.01 49.32 199

QFT 18 3.02 192.91 0.27 16.56 0.87 57.82 24.21 192.77 65535 0.01 48.47 18
21 6.46 192.83 3.63 102.75 0.66 100.75 10208.06 2511.26 4194303 0.01 48.78 21

31 0.03 50.53 31
64 0.09 68.00 64

Grover 16 97.78 195.11 55.90 57.28 6.65 51.88 6.93 16.29 39 0.14 50.54 130
18 770.26 193.42 583.45 144.41 16.37 58.12 23.49 17.24 44 0.33 50.78 148
20 8494.59 198.22 6394.54 382.51 77.95 77.17 85.86 19.05 39 0.78 50.80 166
21 >18000.00 >18000.00 229.45 101.27 168.07 20.60 0.97 50.91 175

27 >18000.00 >18000.00 >18000.00 14.65 51.26 238
30 >18000.00 >18000.00 37.23 51.32 256
40 >18000.00 >18000.00 1239.96 52.01 346

Shor 13 76.75 65.88 0.40 47.56 1665.28 92.03 16375 0.21 52.65 40
15 298.59 62.72 9.30 51.43 16236.14 365.22 65535 0.54 55.09 72
17 343.83 128.81 19.25 55.10 >18000.00 0.76 57.63 66

31 >18000.00 44.60 97.91 305
33 >18000.00 1019.55 156.12 6517
37 >18000.00 5585.64 259.96 20917

All simulations have been conducted on a regular Desktop computer, i.e. a 64-bit machine with 4 cores (8 threads) running at a clock
frequency of 3.8 GHz and 32 GB of memory running Linux 4.4 (source: [19])
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Ryoshi IDE

Motivation

Migration QuIDE to web environment

Comparison Hash Table State Vector Representation with
QMDDs

Simulator features

Text editor supporting (de facto standard) OpenQASM

Graphical circuit designer

Step evaluator with vector state snooping
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Summary

QMDDs as promising replacement for array-based
representation of quantum states and unitary matrices.

Taking advantage of specific domain observations -
redundancies.

Approach that seemed more complex brings better results at
the end - Decision Diagrams.

Quantiki - leading social portal for everyone involved in
quantum information science (https://quantiki.org [22]).

Institute for Integrated Circuits, Johannes Kepler University
Linz, Austria, (http://iic.jku.at/eda [23]).
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