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Example

A classical example.
Take 4 aces, 4 kings, 4 queens and 4 jacks. Arrange them into
4× 4 array such that:

• in every row and column there is only a single card of each suit

• in every row and column there is only a single card of each
rank
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Example

Two mutually orthogonal Latin squares of sizes N = 4 formes a
Graeco-Latin square:
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Example

Euler's problem: 36 o�cers of six di�erent ranks from six di�erent
units come for a military parade. Arrange them in a square such
that in each row/each column all uniforms are di�erent.
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Example

There exists no mutually orthogonal Latin square for N = 2, 6.

Conjectured: Euler; proved: Gaston Terry, 1901.
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De�nition (Greaco-Latin square/orthogonal Latin square)

A Greaco-Latin square or orthogonal Latin square of order n over
two sets S ,T (each consisting n symbols) is n × n arrangment of
cells, each cell containing an ordered pair (s, t) where s ∈ S , t ∈ T
such that every row and every column contains each element of S
and T and that no two cells contain the same ordered pair.
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0 0

1 1

0 0 0

1 1 0

0 1 1

1 0 1

are orthogonal arrays OA(2,2,2,1) and OA(4,3,2,2).
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0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

is orthogonal array OA(9,4,3,2)
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De�nition (Orthogonal array)

An array A of size r × N with entries taken from a d-element set S
is called orthogonal array OA(r ,N, d , k) with r runs, N factors, d
levels, k strength and index λ if every r × k subarray of A contains
each k-tuple of symbols from S exactly λ times as a row.
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We can obtain a Greaco-Latin square from any orthogonal array:
Let's take the last example and set 3rd and 4th columns as the
indexing one. In that way we obtain two Latin squares:

0 1 2

2 0 1

1 2 0

0 2 1

2 1 0

1 0 2
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Which gives us a Graeco-Latin square:

00 12 12

22 01 10

11 20 02
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An OA(r ,N, d , 2) is equivalent to N − 2 Greaco-Latin squares.
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Taguchi methods:

• statistical methods (robust design methods) developed by
Genichi Taguchi

• main goal: improve the quality, productivity and cost aspects
of the process

• later applied to engineering, biotechnology, marketing,
advertising
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Loss function:

• a function that maps an event/values/... onto a real number
representing some "cost" assosiated with them

• an optimization problem seeks to minimize this function

• Taguchi knew statistical theory mainly from Fisher who
avoided loss function

• but he realised that there is a need to produce an outcome on
target
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Taguchi speci�ed 3 situations:

Larger the better (i.e. agricultural yield)

Smaller the better (i.e. carbon dioxide emissions)

On-target, minimum-variation (i.e. mating part in an assembly)

The �rst two cases are represented by simple monotonic loss
function; the third case by a squared-error loss function.
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Signal-to-noise (SN) ratio provide a measure of robutstness vs the
control factors

SN ratio goal of the experiment SN formula

larger the better maximize the response SN = −10 log
(
Σ(1/Y 2)/n

)
)

smaller the better minimize the response SN = −10 log
(
σ2
)

on-target target the response SN = −10 log
(
Σ(Y 2)/n

)
)
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The best opportunity to eliminate variation of the �nal product
quality is during the design of a product.
Taguchi developed an o�-line quality control which has 3 stages:

• system design: design at the conceptual level

• parameter design (robusti�cation): setting design parameters
and nominal values and dimensions to them

• tolerance design: reducing and controlling variation in the
critical few dimensions
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Innovation of design of experiments:

• designing any task that aims to describe or explain the
variation of information under given conditions

• each experiment should be extended with an outer array
(orthogonal array): innovationing SN ratio
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Eight steps in Taguchi methodology:
Step 1. Identify the main function, side e�ect and failure mode.
Step 2. Identify the noise factors, testing conditions and quality
characteristics.
Step 3. Identify the objective functions to be optimized.
Step 4. Identify the control factors and their levels.
Step 5. Select the orthogonal array matrix experiment.
Step 6. Conduct the matrix experiment.
Step 7. Analyze the data, predict the optimum levels and
performance.
Step 8. Perform the veri�cation experiment and plan the future
actions.
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Example

Step 1. Main function: facing operation on MS work piece using
lathe Machine
Side e�ects: Variation in surface �nish

Control factors Noise factors

Cutting speed Vibration

Depth of cut Raw material variation

Feed rate Machine condition

Noise radius Temperature

Coolant Operator Skill
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Step 2.
Quality characteristics: surface �nish
Work piece materia: mild steel
Cutting tool: Tungsten, carbide tipped tool
Operating machine: Lathe machine
Testing equipment: portable surface tester

Barbara Paªka (ABB PG) DOE with classical and quantum OA



Some combinatorical structures
Example of usage − Design of experiments

Quantum combinatorical structures
Classical vs quantum OA

Conclusions

Taguchi methods
Usage of OA

Example

Step 3. Objective function: Smaller the better
SN ratio: SN = −10 log

(
σ2
)

Step 4. Factor/Levels table:

Factor \ Levels 1 2 3

Cutting speed (v,rpm) 960 640 1280

Depth of cut (t, mm) 0.3 0.2 0.4

Feed rate (f, mm/min) 145 130 160
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Step 5. Degrees of freedom: 1 for mean value and 2× 4 two each
for the remaining factors
Orthogonal array:

No. of experiment \ Factors 1 2 3

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 3

5 2 2 1

6 2 3 2

7 3 1 2

8 3 2 3

9 3 3 1
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Step 6.
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Step 7.
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Full factorial design:
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Example of quantum orthogonal Latin square (Vicary, Musto; 2016)

|0〉 |1〉 |2〉 |3〉
|3〉 |2〉 |1〉 |0〉
|Ψ−〉 |Ξ−〉 |Ξ+〉 |Ψ+〉
|Ψ+〉 |Ξ+〉 |Ξ−〉 |Ψ−〉

where |Ψ±〉 = 1√
2

(|1〉 ± |2〉) denote Bell states and

|Ξ+〉 = 1√
5

(i |0〉+ 2 |3〉), |ξ−〉 = 1√
5

(2 |0〉+ i |3〉) are other

entangled states.
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Example

Four states in each row and column form an orthogonal basis in
H4!
Classical combinatorics: discrete set of symbols: 1, 2, . . . ,N.
Quantum combinatorics: continuous family of states |ψ〉 ∈ HN
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De�nition

A quantum Latin square of ordernis an n-by-n array of elements of
the Hilbert space Cn, such that every row and every column is an
orthonormal basis.
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0 1

1 0

leads to the Bell state:
∣∣∣Ψ+

2

〉
= |01〉+ |10〉

0 0 0

1 1 0

0 1 1

1 0 1

leads to a 1-uniform state |Φ3〉 = |000〉+ |110〉+ |011〉+ |101〉
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orthogonal arrays multipartite quantum state |Φ〉
r runs number of terms in the state
N factors numer of qudits
d levels dimension d of the subsystem
k strength class of entanglement

The table shows provided link between orthogonal array
OA(r ,N, d , k) and k-uniform states provided OA satis�es
additional constraints.
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From OA(9,4,3,2) we can get a 2-uniform state of 4 qutrits:

∣∣∣Ψ4

3

〉
= |0000〉+ |0112〉+ |0221〉+ |1011〉+ |1120〉+ |1202〉+

+ |2022〉+ |2101〉+ |2210〉
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We can also encode a Greaco-Latin square (pair of Latin sqaures)
obtained from OA(9,4,3,2)

00 12 21

22 01 10

11 20 02

to corresponding quantum code:

˜|0〉 := |000〉+ |112〉+ |221〉
˜|1〉 := |022〉+ |101〉+ |210〉
˜|2〉 := |011〉+ |120〉+ |202〉
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Usages:

• quantum teleportation: 2-qubit Bell state allows one to
teleport 1 qubit from A to B

• 3-qubit GHZ state allows to teleport 1 qubit between any users

• quantum codes, relations between AME states and
multiunitary matrices, perfects tensors, holographic codes...

Barbara Paªka (ABB PG) DOE with classical and quantum OA



Some combinatorical structures
Example of usage − Design of experiments

Quantum combinatorical structures
Classical vs quantum OA

Conclusions

Quantum Latin square
Quantum orthogonal arrays

De�nition (Quantum orthogonal array)

A quantum orthogonal array QOA(r ,N, d , k) is an arrangment
consisting of r rows composed by N-partite normalized pure
quantum states |ψj〉 ∈ H⊗Nd having d internal levels each, such that

k
r−1∑
j=0

Tri1,i2,...,iN−k
(|ψj〉 · 〈ψj |) = kIk

for every subset of N − k parties i1, i2, . . . , iN−k .

In other words: a QOA is an arrangment having N columns,
possibly entangled, such that every reduction to k columns de�nes
a POVM (set of positive semide�nite operators such that they sum
up to identity).
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Example

QOA(4,5,2,2) constructed from classical OA(4,3,2,2) and the
quantum Bell basis:

|0〉 |0〉 |0〉 |Φ+〉
|0〉 |1〉 |1〉 |Ψ+〉
|1〉 |0〉 |1〉 |Ψ−〉
|1〉 |1〉 |0〉 |Φ−〉

where |Φ±〉 = 1√
2

(|00〉 ± |11〉) and |Φ±〉 = 1√
2

(|01〉 ± |10〉) denote

Bell states.
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OA(4,5,2,2):
0 0 0 0 1

1 1 0 1 0

0 1 1 0 0

1 0 1 1 1

QOA(4,5,2,2):

|0〉 |0〉 |0〉 |Φ+〉
|0〉 |1〉 |1〉 |Ψ+〉
|1〉 |0〉 |1〉 |Ψ−〉
|1〉 |1〉 |0〉 |Φ−〉
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orthogonal arrays quantum orthogonal arrays

r runs rows/runs

N factors space:H⊗Nd /factors
d levels dimension d of the subsystem/internal levels
k strength class of entanglement

The table shows provided link between orthogonal array
OA(r ,N, d , k) and k-uniform states provided OA satis�es
additional constraints.
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• we can generalize combinatorical structures and their
properties

• possible future work: further properties of QOA

• possible future work: usage of QOA in DOE

• possible future work: other quantum combinatorical structures
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