Krakow Quantum Informatics Seminar (KQIS) When the asymmetric cryptography will be outdated?

Paweł Topa, Ph.D.

June 16, 2020

Paweł Topa, Ph.D.

Krakow Quantum Informatics Semi

June 16, 2020

Science concerned with data communication and storage in secure and usually secret form.

- Cryptography secret writing (or other methods of hiding information)
- Cryptanalysis reading secret messages (without knowledge of encryption key).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$\mathrm{Past} \to \mathrm{Today} \to \mathrm{Future}$

- Classic cryptography manipulation (substituting and permuting) of symbols (letters), codebooks.
- Modern cryptography computers and mathematics.
- Quantum cryptography quantum physics and quantum computers.
 - quantum cryptanalysis (Shor's algorithm),
 - key exchange methods,
 - detection of security breeches.
- **Postquantum cryptography** algorithms resistant to quantum cryptanalysis

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Symmetric cryptography:

A D N A B N A B N

- 2

• Symmetric cryptography: Encryption and decryption uses the same key.

18 N

• • • • •

- 2

- Symmetric cryptography: Encryption and decryption uses the same key.
- Public-key (asymmetric) cryptography:

- 2

- Symmetric cryptography: Encryption and decryption uses the same key.
- Public-key (asymmetric) cryptography: Key for encryption (public) is different than key for decryption (private).

- 3

- Symmetric cryptography: Encryption and decryption uses the same key.
- Public-key (asymmetric) cryptography: Key for encryption (public) is different than key for decryption (private).
- Encryption/decryption and digital signature.

- 3

- Symmetric cryptography: Encryption and decryption uses the same key.
- Public-key (asymmetric) cryptography: Key for encryption (public) is different than key for decryption (private).
- Encryption/decryption and digital signature.
- Public key is used to encrypt and verify signature.

- Symmetric cryptography: Encryption and decryption uses the same key.
- Public-key (asymmetric) cryptography: Key for encryption (public) is different than key for decryption (private).
- Encryption/decryption and digital signature.
- Public key is used to encrypt and verify signature.
- Private key is used to decrypt and to create digital signature.

History of public-key cryptography

- Diffie-Hellman key exchange protocol: 1976
- RSA algorithm: 1977 2
- ElGamal cryptosystem: 1985 3
- British Intelligence (GCHQ): 1970 1973 (classified for 25 years) 4

- 3

Key exchange Diffie-Hellman-Merkle protocol

- First asymmetric cryptography algorithm (1976).
- Invented by Martin Hellman and Whitfield Diffi, and independently by Ralph Merkle.
- Only key exchange.
- Security based on the difficulty of calculating discrete logarithms (Discrete Logarithm Problem).

・ 同 ト ・ ヨ ト ・ ヨ ト

• Alice and Bob select large prime number n and a number g such that 1 < g < n.

- 2

イロト イヨト イヨト イヨト

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.

- 3

イロト 不同ト イヨト イヨト

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.

- 22

イロト 不同ト イヨト イヨト

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.

・ロト ・周ト ・ヨト ・ヨト

- 22

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.
- Bob computes $k_B = x^b \mod n$.

・ロト ・周ト ・ヨト ・ヨト

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.
- Bob computes $k_B = x^b \mod n$.
- Alice and Bob now share a secret (number) $k_A = k_B = g^{ab} \mod n$.

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.
- Bob computes $k_B = x^b \mod n$.
- Alice and Bob now share a secret (number) $k_A = k_B = g^{ab} \mod n$.

Eve (eavesdropper) knows x, y, g, n

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.
- Bob computes $k_B = x^b \mod n$.
- Alice and Bob now share a secret (number) $k_A = k_B = g^{ab} \mod n$.

Eve (eavesdropper) knows x, y, g, n

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Alice and Bob select large prime number n and a number g such that 1 < g < n.
- ② Alice chooses large number a and send to Bob result of calculation $x = g^a \mod n$.
- Solution Bob also chooses large number b and send Alice result of calculation $y = g^b \mod n$.
- Alice computes $k_A = y^a \mod n$.
- Bob computes $k_B = x^b \mod n$.
- Alice and Bob now share a secret (number) $k_A = k_B = g^{ab} \mod n$.

Eve (eavesdropper) knows $x, y, g, n \to \text{In order to know } a$ and b she must calculate discrete logarithm.

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Rivest-Shamir-Adelmann Cryptosystem

RSA Cryptosystem

• Rivest, Shamir, Adleman (1977 r.)

< 🗇 🕨

3

RSA Cryptosystem

• Rivest, Shamir, Adleman (2003 r.)

• Security based on the difficulty of integer factorization.

Paweł Topa, Ph.D

Krakow Quantum Informatics Semi

June 16, 2020

Key generation

• Choose two distinct large prime numbers $p \neq q$,

・ロト ・周ト ・ヨト ・ヨト

- 2

Key generation

- Choose two distinct large prime numbers p i q,
- 2 Choose an integer e > 1 and e is coprime with (p-1)(q-1),

<ロト <回ト < 回ト < 回ト = 三

Key generation

- Choose two distinct large prime numbers p i q,
- 2 Choose an integer e > 1 and e is coprime with (p-1)(q-1),

• Compute
$$d = e^{-1} \mod(p-1)(q-1)$$
,

- 2

・ロト ・同ト ・ヨト ・ヨト

Key generation

- Choose two distinct large prime numbers p i q,
- 2 Choose an integer e > 1 and e is coprime with (p-1)(q-1),

• Compute
$$d = e^{-1} \mod(p-1)(q-1)$$
,

• Compute
$$n = pq$$
.

・ロト ・同ト ・ヨト ・ヨト

- 2

Key generation

- Choose two distinct large prime numbers p i q,
- 2 Choose an integer e > 1 and e is coprime with (p-1)(q-1),

• Compute
$$d = e^{-1} \mod(p-1)(q-1)$$
,

• Compute
$$n = pq$$
.

Public key: (n, e).

Paweł Topa, Ph.D.

- 22

・ロト ・周ト ・ヨト ・ヨト

Key generation

- Choose two distinct large prime numbers p i q,
- 2 Choose an integer e > 1 and e is coprime with (p-1)(q-1),

• Compute
$$d = e^{-1} \mod(p-1)(q-1)$$
,

• Compute
$$n = pq$$
.

Public key: (n, e). Private key: (n, d).

Paweł Topa, Ph.D.

- 2

・ロト ・周ト ・ヨト ・ヨト

Encryption with RSA

- Message in divided into blocks of size not greater that key size (i.e. 2048 bits). Message is treated as integer number $m_i < n$.
- 2 Encryption:

 $c_i = m_i^e \mod n$

- Decryption: $m_i = c_i^d \mod n.$
- **③** RSA encryption in this form is insecure textbook RSA

Digital signature can be implemented using RSA cryptosystem Author:

Digital signature can be implemented using RSA cryptosystem Author:

• Applies digest function to the message: $h_m = \text{hash}(m)$.

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$
- Send message and signature to receiver

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$
- Send message and signature to receiver

Receiver:

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$
- **③** Send message and signature to receiver

Receiver:

• Encrypts signature with public key: $sig_m^e = h_m^{ed}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● のへで
Digital signature

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$
- **③** Send message and signature to receiver

Receiver:

- Encrypts signature with public key: $sig_m^e = h_m^{ed}$
- ② Compute digest for received message.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● のへで

Digital signature

Digital signature can be implemented using RSA cryptosystem Author:

- Applies digest function to the message: $h_m = \text{hash}(m)$.
- ② Signature is generated by encrypting digest with private key: $sig_m = h_m^d \mod n$
- **③** Send message and signature to receiver

Receiver:

- Encrypts signature with public key: $sig_m^e = h_m^{ed}$
- ② Compute digest for received message.
- Compare $h_m^{ed} = h_m$ and verify the signature.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Cryptanalyst wants to know the private exponent d.

イロト イヨト イヨト イヨト

æ

- Cryptanalyst wants to know the private exponent d.
- 2 Easy to compute d when p i q are known.

・ロト ・周ト ・ヨト ・ヨト

- Cryptanalyst wants to know the private exponent d.
- 2 Easy to compute d when p i q are known.
- **③** Factorization of n is computationally not feasible.

・ロト ・周ト ・ヨト ・ヨト

- Cryptanalyst wants to know the private exponent d.
- 2 Easy to compute d when p i q are known.
- **\bigcirc** Factorization of n is computationally not feasible.
- Some method are usable when key components fulfill some conditions.

- Cryptanalyst wants to know the private exponent d.
- 2 Easy to compute d when p i q are known.
- **\bigcirc** Factorization of n is computationally not feasible.
- Some method are usable when key components fulfill some conditions.
- Quantum computing and Shor algorithm.

Why the RSA is so important?

- Symmetric cryptography is secure but how to exchange keys?
- Public-key cryptography is extremely slow.
- Solution:
 - public-key cryptography for key exchange/negotiation
 - **2** symmetric cryptography for data encryption/decryption.
- How to ensure that public key is correct?
 - Web of Trust like in PGP
 - 2 Public Key Infrastructure

Rivest-Shamir-Adelmann Cryptosystem

SSL/TLS protocol

• Secured Socket Layer

イロト イヨト イヨト イヨト

- 20

- Secured Socket Layer
- Netscape 1994 (SSL 3.0, 1995)

イロト 不同ト イヨト イヨト

- 32

- Secured Socket Layer
- Netscape 1994 (SSL 3.0, 1995)
- TLS 1.0 Transport Layer Security 1996

- Secured Socket Layer
- Netscape 1994 (SSL 3.0, 1995)
- TLS 1.0 Transport Layer Security 1996
- TLS 1.2, RFC 5246, Sierpień 2008.

→ ∃ →

-

- Secured Socket Layer
- Netscape 1994 (SSL 3.0, 1995)
- TLS 1.0 Transport Layer Security 1996
- TLS 1.2, RFC 5246, Sierpień 2008.
- TLS 1.3, 2018.

• 3 >

- Secured Socket Layer
- Netscape 1994 (SSL 3.0, 1995)
- TLS 1.0 Transport Layer Security 1996
- TLS 1.2, RFC 5246, Sierpień 2008.
- TLS 1.3, 2018.
- OpenSSL, GnuTLS open implementations

くぼう くほう くほう

-

Rivest-Shamir-Adelmann Cryptosystem

Handshake protocol w $\mathrm{SSL}/\mathrm{TLS}$

15/28

Client/Server Hello messages

Client Hello

- Highest supported TLS version.
- 32B string: 4B[client's time] + 28B[random number] — will be used to generate session key.
- Session ID only if session is restarted.
- Supported cryptographic suite, np. TLS_ECDHE_RSA_WITH _AES_128_GCM_SHA256.

Server Hello

- ⇐.
- ⇐.
- Session ID:
 - new ID or
 - ID existing session or
 - null not supported
- Cryptographic suite. Server chooses the strongest.

< ☐ > < ≧ > < ≧ > June 16, 2020 -

Cipher suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. ECDHE — Elliptic curve Diffie-Hellman for session key RSA — for certificates and digital signature. AES_128_GCM — AES encryption, 128b block, GCM (Galois/Counter Mode) cipher mode. SHA256 — digest function.

• Input date: integer N with d digits.

(○) ★ (○) ★

- Input date: integer N with d digits.
- Task: find all prime factors of N.

3 × 4 3 ×

A ID IN A (ID IN A)

- Input date: integer N with d digits.
- Task: find all prime factors of N.
- Breaking RSA requires finding only two prime factors

• 3 >

- Input date: integer N with d digits.
- Task: find all prime factors of N.
- Breaking RSA requires finding only two prime factors
- Best conventional algorithm has sub-exponential computational complexity: General Number Field Sieve (GNFS)

→ ∃→

- Input date: integer N with d digits.
- Task: find all prime factors of N.
- Breaking RSA requires finding only two prime factors
- Best conventional algorithm has sub-exponential computational complexity: General Number Field Sieve (GNFS)
- Shor's algorithm has polynomial complexity

Shor algorithm

Peter Shor, 1994

- Classic (conventional) part: integer factorization to order-finding problem
- **2** Quantum part: solving order-finding problem

- 4 同 1 4 日 1 4 日 1

Problem of order-finding

• Modulo operation:

$$a \equiv b \pmod{N}$$

two integers a, b are congruent modulo N if there is an integer k such that a - b = kn

• Let's $\mathbb{Z}_N = \{0, \dots N - 1\}$ be a set defined by operations modulo N

- Let's $\mathbb{Z}_N^* = \{a \in \mathbb{Z}_N : GCD(a, N) = 1\}$ be the multiplicative group of integers modulo N (appropriate operations are defined)
- For a ∈ Z^{*}_N the order of a in Z^{*}_N is the smallest positive integer r such that:

 $a^r \equiv 1 \pmod{N}$

イロト イポト イヨト イヨト 二日

Problem of order-finding: example

Let's N = 15 and a = 7: $7^x \mod N$

•
$$7^1 \pmod{15} = 7$$

- $7^2 \pmod{15} = 4$
- $7^3 \pmod{15} = 13$
- $7^4 \pmod{15} = 1 \pmod{15}$
- $7^5 \pmod{15} = 16807 \pmod{15} = 7$
- $7^6 \pmod{15} = 117649 \pmod{15} = 4$
- $7^7 \pmod{15} = 823543 \pmod{15} = 13$
- $7^8 \pmod{15} = 5764801 \pmod{15} = 1$ Once again!

then order of 7 in \mathbb{Z}_{15}^* is r = 4:

Let's denote the above expression as function $f^7(x) = 7^x \pmod{15}$. It is periodical: $f^7(x+4) = f^7(x)$.

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Let's assume that N has two prime factors p_1 i p_2 : $N = p_1 \times p_2$

・ロト ・周ト ・ヨト ・ヨト

- 32

● Let's assume that N has two prime factors p₁ i p₂: N = p₁ × p₂
● Pick a random integer a: 2 ≥ a ≥ N − 1.

- Let's assume that N has two prime factors p_1 i p_2 : $N = p_1 \times p_2$
- 2 Pick a random integer $a: 2 \ge a \ge N 1$.
- Let's assume that GCD(N, a) = 1.

- Let's assume that N has two prime factors p_1 i p_2 : $N = p_1 \times p_2$
- 2 Pick a random integer $a: 2 \ge a \ge N 1$.
- Let's assume that GCD(N, a) = 1.
- **(**) Let's r is period of $f^a(x) = a^x \mod N$ magically calculated

- Let's assume that N has two prime factors p_1 i p_2 : $N = p_1 \times p_2$
- 2 Pick a random integer $a: 2 \ge a \ge N 1$.
- Let's assume that GCD(N, a) = 1.
- **(**) Let's r is period of $f^a(x) = a^x \mod N$ magically calculated
- If r is odd go back to step 2.

Rivest-Shamir-Adelmann Cryptosystem

From integer factorization order-finding problem t

$\bullet \ a^r \equiv 1 \pmod{N}$

- 32

a^r ≡ 1 (mod N)
 Let's reformulate: a^r - 1 = (a^{r/2} - 1)(a^{r/2} + 1)

- $\bullet \ a^r \equiv 1 \pmod{N}$
- **2** Let's reformulate: $a^r 1 = (a^{\frac{r}{2}} 1)(a^{\frac{r}{2}} + 1)$
- 3 We note that $a^{\frac{r}{2}} 1$ is not multiply of $N(\frac{r}{2}$ is not a period)

- $\bullet a^r \equiv 1 \pmod{N}$
- **2** Let's reformulate: $a^r 1 = (a^{\frac{r}{2}} 1)(a^{\frac{r}{2}} + 1)$
- **3** We note that $a^{\frac{r}{2}} 1$ is not multiply of $N\left(\frac{r}{2} \text{ is not a period}\right)$
- **(**) Let's assume that $a^{\frac{r}{2}} + 1$ is not multiply of N too.

- $\bullet \ a^r \equiv 1 \pmod{N}$
- **2** Let's reformulate: $a^r 1 = (a^{\frac{r}{2}} 1)(a^{\frac{r}{2}} + 1)$
- **③** We note that $a^{\frac{r}{2}} 1$ is not multiply of $N(\frac{r}{2} \text{ is not a period})$
- **(**) Let's assume that $a^{\frac{r}{2}} + 1$ is not multiply of N too.
- **(** $a^{\frac{r}{2}} \pm 1$ are not multiply of N but they product is.

- $\bullet \ a^r \equiv 1 \pmod{N}$
- **2** Let's reformulate: $a^r 1 = (a^{\frac{r}{2}} 1)(a^{\frac{r}{2}} + 1)$
- We note that $a^{\frac{r}{2}} 1$ is not multiply of $N(\frac{r}{2} \text{ is not a period})$
- Let's assume that $a^{\frac{r}{2}} + 1$ is not multiply of N too.
- **(a** $a^{\frac{r}{2}} \pm 1$ are not multiply of N but they product is.
- Prime factors: $p_1(p_2) = GCD(N, a^{\frac{r}{2}} \pm 1)$
Shor algorithm

Fourier Transform: retrieve from periodic signal all frequencies
Quantum Fourier Transform (QFT) does the same

3

æ

Shor's algorithm in practice

Number	# of factors	# of qubits needed	Algorithm	Year implemented	Implemented without prior knowledge of solution
15	2	8	Shor	2001 [2]	×
	2	8	Shor	2007 [3]	×
	2	8	Shor	2007 [3]	×
	2	8	Shor	2009 [5]	×
	2	8	Shor	2012 [6]	x
21	2	10	Shor	2012 [7]	×
143	2	4	minimization	2012 [1]	\checkmark
56153	2	4	minimization	2012 [1]	\checkmark
291311	2	6	minimization	not yet	1
175	3	3	minimization	not yet	\checkmark

Table 5: Quantum factorization records

Paweł Topa, Ph.D.	Krakow Quantum Inform	natics Semi	June 16, 2020	25 / 28
-------------------	-----------------------	-------------	---------------	---------

What about other public-key cryptosystems?

- Diffie-Hellman protocol, ElGamal and DSA: Peter W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
- Elliptic-Curve Cryptography (ECC), ECDH (Elliptic Curve Diffie-Hellman), ECDSA (Elliptic Curve Digital Signature Algorithm): Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms, Shor's discrete logarithm quantum algorithm for elliptic curves

イロト イポト イヨト イヨト

Future of cryptography

- Crypto-agility
- Post-quantum cryptography:
 - lattice-based cryptography
 - hash-based cryptography
 - correction codes-based cryptography
 - multivariate cryptography

• 3 >

3