

¹A. Higuchi, A. Sudbery, *How entangled can two couples get?*, Phys. Lett. A 273 (2000)

AME states	Methods of construction	SLOCC equivalen	o Graph states	Conclusions O
MULTIPARTITE SYSTEMS				
	1 2	1 2	1	2
	3 4	3 4	3	4
G	eneralized GHZ state?	2	$\mathcal{H}_2 \otimes \mathcal{H}_2 \otimes \mathcal{H}$	$\mathcal{L}_2\otimes\mathcal{H}_2$
	$ GHZ angle_4 = rac{1}{\sqrt{2}} \Big(0000 angle + 1111 angle\Big)$			
 ▶ Reduced density matrices are not maximally mixed, i.e. ρ₁₂, ρ₁₃, ~ Id₄ ▶ Such a state of 4 qubits does not exist.¹. 				
Fo	our qutrits state		$\mathcal{H}_3 \otimes \mathcal{H}_3 \otimes \mathcal{H}$	$_{3}\otimes \mathcal{H}_{3}$
	$ \psi\rangle = 0000\rangle + 0121\rangle + 02$	$12\rangle +$	$ \rho_{12}(\psi) = \rho_{34}(\psi) = \text{Id} $	9
	$ 1110\rangle + 1201\rangle + 10 $ $ 2220\rangle + 2011\rangle + 21 $	$22\rangle + 02\rangle$	$ \rho_{13}(\psi) = \rho_{24}(\psi) = \text{Id} $ $ \rho_{14}(\psi) = \rho_{23}(\psi) = \text{Id} $.9 19
	1	1 (2 D)	L A 272 (2000)	

A. Higuchi, A. Sudbery, How entangled can two couples get?, Phys. Lett. A 273 (2000)

 $|2220\rangle + |2011\rangle + |2102\rangle$

 $\rho_{13}(\psi) = \rho_{24}(\psi) = \mathrm{Id}_9$ $\rho_{14}(\psi) = \rho_{23}(\psi) = \mathrm{Id}_9$

 $|2220\rangle + |2011\rangle + |2102\rangle$

 $\rho_{13}(\psi) = \rho_{24}(\psi) = \mathrm{Id}_9$ $\rho_{14}(\psi) = \rho_{23}(\psi) = \mathrm{Id}_9$

AME states 0000	Methods of construction ●○	SLOCC equivalence	Graph states 0	Conclusions 0
Metho	D OF CONSTRU	CTION		
MDS of	codes			
Generato	or matrix over GF(3)			

AME states 0000	Methods of construction ●0	SLOCC equivalence	Graph states 0	Conclusions 0
Метно	D OF CONSTRU	CTION		
MDS	codes			
Generat	or matrix over GF(3)			
	$G_{2\times 4} = \left[\begin{array}{cc c} 1 & 0 & 1\\ 0 & 1 & 2 \end{array} \right]$	$\begin{bmatrix} 1\\1 \end{bmatrix}$		
	i,j,i+j,2i+	$ j\rangle \in \mathcal{H}_3^{\otimes 4}$		
► A	ll 2 $ imes$ 2 minors are not vanis	shing		

AME states 0000	Methods of construction •0	SLOCC equivalence	Graph states 0	Conclusions 0
Method	O OF CONSTRU	CTION		
MDS c	odes		IrOA	
Generator ► All	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 1 \\ 2 \\ \sum_{i,j=0}^{2} i,j,i+j,2i+2 \\ 2 \times 2 \text{ minors are not vanis}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$ $\neq j \rangle \in \mathcal{H}_3^{\otimes 4}$ Shing		

AME states 0000	Methods of construction ●0	SLOCC equivalence	Graph state 0	es Cor o	nclusions
Method	OF CONSTRU	CTION			
MDS co	odes		IrOA		
Generator ► All 2 ► AM	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 \\ 0 & 1 & & 2 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+2 \times 2 \text{ minors are not vanis} \\ E(4,3) \text{ state}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$ $j \rangle \in \mathcal{H}_3^{\otimes 4}$ Sching			

AME states 0000	Methods of construction ●○	SLOCC equivalence 0000	Graph states 0	Conclusions o
Method	OF CONSTRU	CTION		
MDS co	odes		IrOA	
Generator ► All 2 ► AMI	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1\\ 0 & 1 & & 2 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+2\times 2 \text{ minors are not vanist} \\ E(4,3) \text{ state}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$ $j \rangle \in \mathcal{H}_3^{\otimes 4}$ hing	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

AME : 0000	states	Methods of construction ●○	SLOCC equivalence	Graph stat 0	es Conc o	lusions
M	ETHOD	OF CONSTRUC	TION			
	MDS co	odes		IrOA		
	Generator n ► All 2 ► AME	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 & 1 \\ 0 & 1 & & 2 & 1 & 1 \\ \sum_{i,j=0}^{2} & i,j,i+j,2i+j\rangle \\ \times 2 \text{ minors are not vanishi} \\ S(4,3) \text{ state}$	$\in \mathcal{H}_3^{\otimes 4}$ ng	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

AME 0000	states)	●O	SLOCC equivalence	Graph state: 0	s Conclusions o
M	ETHOD	OF CONSTRUC	TION		
	MDS co	odes		IrOA	
	Generator n ► All 2 ► AME	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 \\ 0 & 1 & & 2 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j \\ \times 2 \text{ minors are not vanish} \\ E(4,3) \text{ state}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $ angle \in \mathcal{H}_3^{\otimes 4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0000) 0111) 0222) 1012) 120) 1201) 2021) 2102) 2210)

AME : 0000	states	Methods of construction ●○	SLOCC equivalence	Graph state 0	s Conclusions o
M	ETHOD	OF CONSTRUC	ΓΙΟΝ		
	MDS co	odes		IrOA	
	Generator r All 2 AME Generator r	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 \\ 0 & 1 & & 2 & 1 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle \\ \times 2 \text{ minors are not vanishin} \\ (4,3) \text{ state} \\ \text{matrix over GF(5)} \\ G_{2\times6} = \begin{bmatrix} 1 & 0 & & 1 & 1 & 1 \\ 0 & 1 & & 1 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 2 \\ 2 & 2 \\ 1 & 0 & 1 \\ 2 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 1 & 0 \\ \end{bmatrix} $	0000) 0111) 0222) 1012) 120) 201) 2021) 2102) 2210)

AME : 0000	states	Methods of construction ●○	SLOCC equivalence	Graph state 0	s Conclusions o
M	ETHOD	OF CONSTRUC	ΓΙΟΝ		
	MDS co	odes		IrOA	
	Generator r All 2 AME Generator r	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 \\ 0 & 1 & & 2 & 1 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle \\ \times 2 \text{ minors are not vanishin} \\ (4,3) \text{ state} \\ \text{matrix over GF(5)} \\ G_{2\times6} = \begin{bmatrix} 1 & 0 & & 1 & 1 & 1 \\ 0 & 1 & & 1 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 2 \\ 2 & 2 \\ 1 & 0 & 1 \\ 2 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 1 & 0 \\ \end{bmatrix} $	0000) 0111) 0222) 1012) 120) 201) 2021) 2102) 2210)

AME	states	Methods of construction • 0	SLOCC equivalence	Graph state: 0	s	Conclusions 0
M	ETHOD	OF CONSTRUC	ΓΙΟΝ			
	MDS co	odes		IrOA		
	Generator n ► All 2 ► AME Generator n	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$ $\sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle$ × 2 minors are not vanishin G(4,3) state matrix over GF(5)	$\Big] \in \mathcal{H}_3^{\otimes 4}$ ng	$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 0 \end{bmatrix} $	0000) 0111) 0222) 1012) 1120) 201) 2021) 2102) 2210)	
	($G_{2\times 6} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ $ i, j, i+j, i+2j, i+3j, i$	$\begin{bmatrix} 1\\4 \end{bmatrix}$ $(i+4j) \in \mathcal{H}_5^{\otimes 6}$			

AME 9 0000	states	Methods of construction ●○	SLOCC equivalence	Graph state: 0	s Conclusions o
M	ETHOD	OF CONSTRUC	ΓΙΟΝ		
	MDS co	odes		IrOA	
	Generator n ► All 2 ► AME Generator n	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 \\ 0 & 1 & & 2 & 1 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle \\ \times 2 \text{ minors are not vanishin} \\ G(4,3) \text{ state} \\ matrix over GF(5)$	$\Big] \in \mathcal{H}_3^{\otimes 4}$ ng	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 1 & 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 2 & 1 \\ 2 & 0 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 & 2 \\ 2 & 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 0 & 2 \\ \end{bmatrix} $	0000) 0111) 0222) 1012) 1120) 1201) 2021) 2102) 2210)
	($G_{2\times 6} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ $\sum_{i,j=0}^{4} i,j,i+j,i+2j,i+3j,i $	$\begin{bmatrix} 1\\4 \end{bmatrix}$ $(4+4j) \in \mathcal{H}_5^{\otimes 6}$		

AME s 0000	tates	Methods of construction • 0	SLOCC equivalence	Graph state: 0	s Conclusions o
M	ETHOD	OF CONSTRUC	TION		
	MDS co	odes		IrOA	
	Generator r ► All 2 ► AME Generator r	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 \\ 0 & 1 & & 2 & 1 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle$ × 2 minors are not vanishin G(4,3) state matrix over GF(5)	$\Big] \in \mathcal{H}_3^{\otimes 4}$ ng	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 0 \end{bmatrix} $	0000) 0111) 0222) 1012) 1120) 1201) 2021) 2102) 2210)
	► A 2-1	$G_{2\times 6} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ $\sum_{i,j=0}^{4} i,j,i+j,i+2j,i+3j,i $ miform state	$\left[\begin{matrix} 1 \\ 4 \end{matrix} ight] \ i+4j angle \ \in \mathcal{H}_5^{\otimes 6}$		

0000	tates	•0	0000	0	0
METHOD OF CONSTRUCTION					
	MDS cc	odes		IrOA	
	 Generator r All 2 AME Generator r 	matrix over GF(3) $G_{2\times4} = \begin{bmatrix} 1 & 0 & & 1 & 1 \\ 0 & 1 & & 2 & 1 \\ & \sum_{i,j=0}^{2} i,j,i+j,2i+j\rangle$ × 2 minors are not vanishing (4,3) state matrix over GF(5)	$\in \mathcal{H}_3^{\otimes 4}$ ng	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000) 0111) 0222) 1012) 1120) 1201) 2021) 2102) 2210)
	($G_{2\times 6} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ $\sum_{i,j=0}^{4} i,j,i+j,i+2j,i+3j,i+3j $	$\left[\begin{array}{cc} 1 \\ 4 \end{array} ight]$ $\left[i+4j ight> \in \mathcal{H}_5^{\otimes 6}$		
	► A 2-u	iniform state			

SLOCC equivalence

Craph states

Conclusione

► States with the minimal support

Methods of construction

AME states

$$(F_3)^{\otimes 4} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \overline{\omega} \\ 1 & \overline{\omega} & \omega \end{pmatrix}^{\otimes 4}$$

$$\left(F_3
ight)^{\otimes 4}=\left(egin{matrix}1&1&1\1&\omega&\overline{\omega}\\1&\omega&\omega\end{pmatrix}^{\otimes 4}$$

SLOCC \equiv **LM** + **B**(**d**,**d**) for AME(2k,d) states (min. supp.)

non LU-equivalency

For a local dimension $d \ge 5$, the states $|\psi_{5,0}\rangle$ and $|\psi_{5,2}\rangle$ are not LU.

non LU-equivalency

For a local dimension $d \ge 5$, the states $|\psi_{5,0}\rangle$ and $|\psi_{5,2}\rangle$ are not LU.

AME 0000	states	1	Metho ၁୦	ds of	constr	uction	SLOCC equivalence 000●	Graph states 0	Conclusions 0
DI	FFERI	ΞN	ΤF	PH.	AS	es - E	EXAMPLE		
	AME	(4,3	8) st	tate	es				
	$ \psi angle$	$=\omega_0$ ω_1 ω_2	₂₀ 00 11 11 22 22	00) - 10) - 20) -	$+ \omega_{01}$ $+ \omega_{12}$ $+ \omega_{20}$	$ 0121\rangle +$ $ 2 1201\rangle +$ $ 2011\rangle +$	$\begin{array}{l} \omega_{02} 0212\rangle+\\ \omega_{10} 1022\rangle+\\ \omega_{21} 2102\rangle\end{array}$	$\rho_{12}(\psi) = \rho_{34}(\psi) = \text{Id}_{4}$ $\rho_{13}(\psi) = \rho_{24}(\psi) = \text{Id}_{4}$ $\rho_{14}(\psi) = \rho_{23}(\psi) = \text{Id}_{4}$	9
	are SLO	cc-e fori	equiv m s	aler tat	ıt. Ge es	enerally t	rue for all 1- and 2-uni	iform states (min. supp.)).
	Changin one , the $k > 2$.	ig a p re ex	ohas ist ir	e by Ifini	only tely :	one tern many. Ge	n yields non-SLOCC-ea enerally true for all k-u	quivalent state. If there e iniform states (min. sup	exists p.),
	local dimension AME(3,d)	2 qubits	3 qutrits 1	4	5	6 7 1 1			

dimension	qubits	qutrits	4	5	0	'									
AME(3,d)	1	1	1	1	1	1									
AME(4,d)	0	1	1	1	0	1									
AME(5,d)	0	0	1	1	0	1									
AME(6,d)	0	0	∞	∞	0	∞									
AME(7,d)	0	0	0	0	0	∞									
AME	states	1	Metho ၁୦	ds of	consti	ruction		SLOCC equival 000●	ence	(Graph sta D	ites		Conc o	lusions
-----	--	----------------	-----------------	---------------	---------------------	----------------------	-------------------	--------------------------------	-------------------------	----------------	----------------------	--------------------	--------------	--------------	---------
DI	FFERI	EN	T F	ΡH	AS	ES -	EXA	AMPLE							
	AME(4,3) states														
	$\begin{split} \psi\rangle =& \omega_{00} 0000\rangle + \omega_{01} 0121\rangle + \omega_{02} 0212\rangle + & \rho_{12}(\psi) = \rho_{34}(\psi) = \mathrm{Id}_9 \\ & \omega_{11} 1110\rangle + \omega_{12} 1201\rangle + \omega_{10} 1022\rangle + & \rho_{13}(\psi) = \rho_{24}(\psi) = \mathrm{Id}_9 \\ & \omega_{22} 2220\rangle + \omega_{20} 2011\rangle + \omega_{21} 2102\rangle & \rho_{14}(\psi) = \rho_{23}(\psi) = \mathrm{Id}_9 \end{split}$ are SLOCC-equivalent. Generally true for all 1- and 2-uniform states (min. supp.).														
	Changin one , then $k > 2$.	g a p re ex	ohase ist ir	e by Ifini	only tely	r one ter many. (rm yiel Genera	lds non-SLO illy true for a	CC-equiv Ill k-unifo	valer orm :	it state states (. If the min. s	re ex upp	cists .),	
	local dimension	2 qubits	3 qutrits	4	5	6 7			local dimension	2 qubits	3 qutrits	4 5	6	7	

local dimension	2 qubits	3 qutrits	4	5	6	7
AME(3,d)	1	1	1	1	1	1
AME(4,d)	0	1	1	1	0	1
AME(5,d)	0	0	1	1	0	1
AME(6,d)	0	0	∞	∞	0	∞
AME(7,d)	0	0	0	0	0	∞

	local dimension	2 qubits	3 qutrits	4	5	6	7
	AME(3,d)	1	1	1	1	1	1
	AME(4,d)	0	1	1	1	0?	1
	AME(5,d)	1	1	1	2	1	2
	AME(6,d)	1	1	∞	∞	1	∞
-	AME(7,d)	0	1	1	1	0?	∞

AME states 0000	Methods of construction 00	SLOCC equivalence	Graph states 0	Conclusions •
Summ	IARY			
►	New method of constructing	k-uniform states		
►	There is an advantage of a loc	al dimension <i>d</i> .		
►	There is an advantage in som	e teleportation protocols		
►	There is a difference between	non-min. and min. supp	ort states.	

AME states 0000	Methods of construction 00	SLOCC equivalence 0000	Graph states 0	Conclusions •
SUMM	ARY			
▶]	New method of constructing	k-uniform states		
	There is an advantage of a loc There is an advantage in some	al dimension d .		
▶ .	There is a difference between	non-min. and min. supp	oort states.	
▶]	Not all AME(5, <i>d</i>) states are LU	J-equivalent, $d \ge 5$.		

AME states 0000	Methods of construction 00	SLOCC equivalence	Graph states 0	Conclusions •
Summ	IARY			
•	New method of constructing <i>l</i> There is an advantage of a loc There is an advantage in some	c-uniform states al dimension <i>d</i> .		
•	There is a difference between :	non-min. and min. supp	ort states.	
►	Not all AME(5, <i>d</i>) states are LU	J-equivalent, $d \ge 5$.		
•	If there exists one AME(2k,d) infinitely many of them.	state of the minimal sup	port for $k > 2$, ther	'e are

AME states 0000	00	SLOCC equivalence	Graph states 0	Conclusions
Summ	IARY			
	New method of constructing <i>k</i> There is an advantage of a loc There is an advantage in some There is a difference between Not all AME(5, <i>d</i>) states are LU If there exists one AME(2k,d) infinitely many of them. How Exact SLOCC classification for arXiv:2003.13639	t-uniform states al dimension <i>d</i> . e teleportation protocols non-min. and min. supp J-equivalent, $d \ge 5$. state of the minimal sup τ they can be parametriz e all <i>k</i> -uniform states.	port states. port for $k > 2$, there ed?	e are

