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Outline of presentation

Measurement noise + mitigation

PART I – on small systems

PART II – on big systems



PART I is based on:

▪ Quantum 4 257 (2020)



Outline of PART I

Measurement noise + mitigation on small systems

1. Basic definitions

2. Noise model and mitigation.

3. Quantum Detector Tomography.

4. Some error analysis.



▪ Quantum measurement with n outcomes is a vector of operators:

Basic definitions – measurements



▪ Projective measurements fulfill additional requirement:
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▪ Projective measurements fulfill additional requirement:

Basic definitions – projective measurements



▪ If we perform measurement𝑀 on quantum state ρ, probability of 
obtaining outcome „i” is given by:

Basic definitions – Born’s rule
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Measurement noise + mitigation on small systems

1. Basic definitions

2. Noise model and mitigation.

3. Quantum Detector Tomography.

4. Short error analysis.



▪ We want to perform projective measurement:

Classical measurement noise
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▪ On the level of probability vectors:

Classical measurement noise
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Mitigation of classical noise

▪ This is possible provided we know noise matrix Λ!



Mitigation of classical noise

▪ This is possible provided we know noise matrix Λ!

▪ How to reconstruct it (and verify noise model)?
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3. Quantum Detector Tomography.

4. Some error analysis.
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▪ Put inside a measurement device various quantum states, 
estimate probabilities…
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▪ …and use Born’s rule to reconstruct measurement operators:



Quantum Detector Tomography (QDT) – experiments

▪ How it looks in practice?
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▪ Hence if classical noise model is accurate, we expect reconstructed
operators to be diagonal…

▪ How it looks in practice?

▪ Yesterday evening, the measurement on qubit number 9 on Melbourne
device looked like this:



Quantum Detector Tomography (QDT) – experiments
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Quantum Detector Tomography (QDT) – experiments

▪ Hence classical noise model is good, but not perfect…

▪ How coherent noise affect error mitigation?
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1. Basic definitions

2. Noise model and mitigation.

3. Quantum Detector Tomography.

4. Some error analysis.



Mitigation of classical noise

▪ On the level of probability vectors:
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▪ Presented error mitigation method is not perfect because:
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▪ Presented error mitigation method is not perfect because:
– noise is not completely classical,

– estimated statistics are not probabilities.

What can go wrong?
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Effects of coherent errors



Effects of coherent and statistical errors



▪ Presented error mitigation method is not perfect because:
– noise is not completely classical,

– estimated statistics are not probabilities.

What can go wrong?



▪ Presented error mitigation method is not perfect because:
– noise is not completely classical,

– estimated statistics are not probabilities.

What can go wrong?

▪ So does this actually work? 



Error-mitigation – experiments on 1 qubit

▪ Single-qubit quantum state tomography.

▪ Figure of merit: infidelity.
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Error-mitigation – experiments on 2 qubits

▪ Two-qubit quantum state tomography.

▪ Figure of merit: infidelity.
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Error-mitigation – experiments on 2 qubits

▪ Two-qubit quantum algorithms: Grover’s  and Bernstein–Vazirani.

▪ Figure of merit: probability of success.
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Error-mitigation – experiments on 5 qubits



Error-mitigation – experiments on 5 qubits

▪ Implementation of five-qubit probability distributions.

▪ Figure of merit: Total-Variation Distance from perfect distribution.
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Error-mitigation – experiments on 5 qubits
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Outline of PART I

Measurement noise + mitigation on big systems

1. Problems with noise description + solution.

2. Problems with noise mitigation + “solution”.



Mitigation of classical noise

▪ On the level of probability vectors:
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Quantum Detector Tomography complexity

▪ Number of states we need to prepare is in general equal to 4N.



Quantum Detector Tomography complexity

▪ Number of states we need to prepare is in general equal to 4N.

▪ However…
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▪ …if we checked that noise is classical via single-qubit Quantum 
Detector Tomography…

▪ … we can restrict ourselves to reconstruction of only diagonal 
elements of noisy measurement operatos...



1q classical noise



1q classical noise



2q noise-matrix characterization via DDT
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Diagonal Detector Tomography (DDT)

▪ …if we checked that noise is classical via single-qubit Quantum 
Detector Tomography…

▪ … we can restrict ourselves to reconstruction of only diagonal 
elements of noisy measurement operatos…

▪ … which anyway gives 2N circuits using DDT.
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Problems with noise characterization

▪ Problem: Requires reconstruction of generic noise matrix. 

▪ Solution: 
Real noise is unlikely to be generic –
we can make use of locality of correlations 
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(too) Simple solution

▪ Think about the simplest model – uncorrelated noise:

▪ It is efficient in terms of:

▪ Unfortunately, it is not very accurate1!
1 Quantum 4, 257, FBM, Z. Zimborás, M. Oszmaniec (2020).



Slightly less simple solution

▪ Model correlations locally, but do not be too naive.



Multi-qubit noise model
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Multi-qubit noise model - illustration

▪ Strongly correlated qubits are grouped into 
clusters. Each cluster has corresponding noise 
matrix.

▪ The noise matrix in each cluster depends on the 
state of the neighbors just before measurement.

▪ Characterization of clusters and neighbors can be 
cheap (if they are not too big).
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Multi-qubit noise model - construction
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Slightly less simple solution

▪ Global noise with local clusters and neighbors:

▪ It is efficient in terms of:



Multi-qubit noise characterization

▪ Method of efficiently characterizing readout noise:
– Perform parallel noise characterization using generalized

Quantum Overlapping Tomography1 – Diagonal Detector Overlapping Tomography.

1 Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Detector Overlapping Tomography – main idea

▪ Separate DDTs on pairs of qubits require ~N2 circuits…

▪ … but if you make it paralel… DDOT uses ~log(N) exp(K) circuits.
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fives of qubits requires 25 15
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Detector Overlapping Tomography – main idea

▪ Relevant example: for 15 qubits, reconstruction of noise matrices on all 
fives of qubits requires 25 15

5
~ 100,000 circuits. 

▪ Overlapping tomography allows to do so using ~350 circuits.



Multi-qubit noise characterization

▪ Method of efficiently characterizing readout noise:
– Perform parallel noise characterization using generalized

Quantum Overlapping Tomography1 – Diagonal Detector Overlapping Tomography.

1 Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Multi-qubit noise characterization

▪ Method of efficiently characterizing readout noise:
– Perform parallel noise characterization using generalized

Quantum Overlapping Tomography1 – Diagonal Detector Overlapping Tomography.

– From results of DDOT get structure of clusters and neighborhoods.

– If needed, refine a noise model with standard, local DDTs or restricted DDOTs.

1 Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)



Multi-qubit noise characterization

▪ Method of efficiently characterizing readout noise:
– Perform parallel noise characterization using generalized

Quantum Overlapping Tomography1 – Diagonal Detector Overlapping Tomography.

– From results of DDOT get structure of clusters and neighborhoods.

– If needed, refine a noise model with standard, local DDTs or restricted DDOTs.

– Construct a noise model.

1 Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Experimental results – IBM, 15 qubits (clusters)



Experimental results – IBM, 15 qubits (clusters and neighbours)



(~solved) Problems with noise characterization



▪ Problem: Requires reconstruction of generic noise matrix. 

▪ Solution: 
Real noise is unlikely to be generic - we can exploit locality of correlations. 
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▪ Problem: Requires reconstruction of generic noise matrix. 

▪ Solution: 
Real noise is unlikely to be generic - we can exploit locality of correlations. 

See other works on this:
– arXiv:2001.09980

M.R. Geller, M. Sun (Jan 2020)

– arXiv:2001.09980
K. E. Hamilton, T. Kharazi, T. Morris, A. J. McCaskey, R. S. Bennink, R.C. Pooser (Jun 2020)

– arXiv:2006.14044
S. Bravyi, S. Sheldon, A. Kandala, D.C. Mckay, J. M. Gambetta (Jun 2020)

(~solved) Problems with noise characterization



Problems with noise-mitigation



Problems with noise-mitigation

▪ Problem: 
Requires post-processing of exponentially big noise matrix
and exponentially big probability vectors.
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Problems with noise-mitigation

▪ Problem: 
Requires post-processing of exponentially big noise matrix
and exponentially big probability vectors.

▪ “Solution” : 

Focus on problems which are feasible.
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▪ Those which require estimation of marginal probability distributions 
(for example - estimation of energy of local Hamiltonians).
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▪ Those which require estimation of marginal probability distributions 
(for example - estimation of energy of local Hamiltonians).
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Does it work in real life?

▪ Proposition for benchmark of the noise model and error-mitigation:
– Prepare classical state which is a ground state of some local Hamiltonian.

– Perform noise-mitigation on marginals.

– Estimate energy and compare.

▪ We did it for 600 Hamiltonians encoding random MAX 2SAT 
(clause density 4) instances and fully connected random 2-local 
Hamiltonians on IBM’s 15Q Melbourne device.
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Experimental results – IBM, 15 qubits (random 2-local)
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Additional slides 

▪ Model of classical measurement noise which exploits locality of correlations.

▪ Efficient characterization of the model using Diagonal Detector Overlapping 
Tomography (which is generalized Quantum Overlapping Tomography).

▪ Successful noise-mitigation in experiments on 15 qubits.

▪ Effects of approximate mitigation and statistical errors.

▪ Effects of realistic readout noise on 
Quantum Approximate Optimization Algorithm.

▪ Statistical analysis of estimation of energy of local Hamiltonians.

▪ Check out our GitHub repository: github.com/fbm2718/QREM


