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Mitigation of readout noise in near-term quantum devices
by classical post-processing based on detector tomography
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= Quantum measurement with n outcomes is a vector of operators:
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Basic definitions - Born’s rule
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= |f we perform measurement M on quantum state p, probability of
~ obtaining outcome 1" is given by:

7\( | Mpem L( M)
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Classical measurement noise
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~ Mitigation of classical noise
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Mitigation of classical noise
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£ This is possible provided we know noise matrix A!

= How to recOnStruct_ it (and verify noise model)?
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3. Quantum Detector Tomography.
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Some error analysis.
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estlmate probabllltles

3/1‘“”’”§ QZi_ gf—%‘k/ [\( _T%q’ » )

\

~

S V/“(”%fo )



- Quantum Detector Tomography (QDT) - basic idea

— - = —— < e e e = =

= _..and use Born’s rule to reconstruct measurement operators:



- Quantum Detector Tomography (QDT) - basic idea

— - = —— < e e e = =

= ...and use Born'’s rule to reconstruct measurement operators:



Quantum Detector Tomography (QDT) - experiments
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= How it looks in practice?
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Classical measurement noise
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Quantum Detecton Tomography (QDT) — expenlments

— = ~ N - e gt et AN y

Hence if cla55|ca| noise modeI is accurate we expect reconstructed
operators to be diagonal...

How it looks in practice?

Yesterday evening, the measurement on qubit number g on Melbourne ’
device looked like this: '

0.943 0001 (1-1) 0001 (1-4)

0001 (14:) - 0001 (1) 0909



Quantum Detecton Tomography (QDT) — expenlments
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Hence if c|a55|ca| noise model is accurate we expect reconstructed
operators to be diagonal...

How it looks in practice?

Yesterday evening, the measurement on qubit number g on I\/Ierourne ’
device looked like this: SWACL— '
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Quantum Detector Tomography (QDT) - experiments
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= Hence classical noise model is good, but not perfect...

= How coherent noise affect error mitigation?
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= Presented error mitigation method is not perfect because:
- noise is not completely classical,
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Effects of coherent errors
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what can go wrong?

S — < - - ———

= Presented error mitigation method is not perfect because:
- noise is not completely classical,
- estimated statistics are not probabilities.
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what can go wrong?
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= Presented error mitigation method is not perfect because:

= noise is not completely classical,
- estimated statistics are not probabilities.

* So does this actually work?



Error-mitigation —éxperiments on 1 qubit
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Error-mitigation - experiments on 1 qubit
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Error-mitigation - experiments on 2 qubits -
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= Two-qubit quantum state tomography

Flgure of merit: infidelity.
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Error-mitigation - experiments on 2 qubits -
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e - Two-qubit quantum algorithms: Grover’s and Bernstein—Vazirani.

- ..Fig_u re of mei'it': probability of success.



Error-mitigation - experiments on 2 qubits
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Error-mitigation - experiments on 5 qubits -
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Algorithm  Standard (Corr (1¢ ® 1q)) (Corr (2¢)

Grover’s  0.58 £ 0.01 O-.TO = 0.02 0.79 == 0.02
BV 0.50 = 0.02 0.63 = 0.02 0.61 = 0.02




Error-mitigation - experiments on 5 qubits -
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: Implementation of five-qubit probability distributions.

Flgure of merit: Total-Variation Distance from perfect distribution.
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Error-mitigation - experiments on 5 qubits

—

UNCORREIATED N OJSE modEL

Name Standard Corrected v

Uniform 0.110 &+ 0.006 0.100 + 0.007 0
NOT 0.66 £+ 0.02 0O=+0 0.36 £+ 0.09
Mixed 0.196 + 0.006 0.031 &+ 0.008 0.019+ 0.005

Name Corrected

Uniform +
NOT +
Mixed +
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Error-mitigation - experiments on 5 qubits
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UNCORRELATED  NOJSE  moDEL
Name Standard Corrected o)

Uniform 0.110 &+ 0.006 0.100 + 0.007 0
NOT 0.66 £+ 0.02 0O=+0 0.36 £+ 0.09
Mixed 0.196 + 0.006 0.031 &+ 0.008 0.019+ 0.005

Name Corrected o

Uniform 0.03 &= 0.02 0
NOT 0.004 £ 0.023 0.04 £+ 0.04
Mixed 0.022 + 0.007 0.023 + 0.007

CORRELATED (1 ppje)
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Measurement noise + mitigation on big systems

1. Problems with noise description + solution.

2. Problems with noise mitigation + “solution”.
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Quantum Detector Tomography complexity
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£ __ Number of states we need to prepare is in general equal to 4".

= Howevera+=
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Diagonal Detector Tdmography (DDT)
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s ifwe checked that noise is classical via single-qubit Quantum
| DetectorTomography
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= ... we can restrict ourselves to reconstruction of only diagonal
elements of noisy measurement operatos...
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2q noise-matrix characterization via DDT
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Diagonal Detector Tdmography (DDT)

S ——— - —— = e ——— e R e 5

= ifwe checked that noise is classical via single-qubit Quantum
: DetectorTomography

= ... we can restrict ourselves to reconstruction of only diagonal
elements of noisy measurement operatos...

= ... which anyway gives 2" circuits using DDT.
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Problems with noise characterization
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= Problem: Requires'reconstru'ction of generic noise matrix.

Ae R—

= Solution: |
Real noise is unlikely to be generic —
we can make use of locality of correlations
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(too) Simple solution
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= Think about the simplest model — uncorrelated noise:

- ,/&;:’-/X@%é QM<y.>d @9 /X%N

= |tis efficient in terms of:

= Unfortunately, it is not very accurate™!

*Quantum 4, 257, FBM, Z. Zimboras, M. Oszmaniec (2020).



Slightly less simple solution
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£ Model correlations locally, but do-not be too naive.
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@ C/*:?Q%ng

= Strongly correlated qubits are grouped into
clusters. Each cluster has corresponding noise
matrix. |

* The noise matrix in each cluster depends on the
state of the neighbors just before measurement.
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= Multi-qubit noise model - illustr‘ation

@ C/%/ % Q3I Qgg
= Strongly correlated qubits are grouped into

clusters. Each cluster has corresponding noise
matrix. |

* The noise matrix in each cluster depends on the
state of the neighbors just before measurement.

= Characterization of clusters and neighbors can be
cheap (if they are not too big).
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Multi—qubit.noise characterization

— s = : e : L XY S Sy e :

= Method of efficient‘ly chéracterizing readout noise:

— Perform parallel noise characterization using generalized
Quantum Overlapping Tomography*— Diagonal Detector Overlapping Tomography.

1Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Detector Ovérlapping Tomography - main idea -
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= Separate DDTs on'pairs'f.' quubits require ~N? circuits...

= ... butif you make"it'paravlel._.. |
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= Separate DDTs onhpairsf.' quubits require ~N? circuits...

= ... butif you maké'it'paralel._.. DDOT uses ~log(N) exp(K) circuits.
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= Relevant example: for 15 qubits, reconstruction of noise matrices on all
fives of qubits requires 25 ( 55) ~ 100,000 Circuits.

. Overvlapping tomography allows to do 56 using ~350 circuits. ' |
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— Perform parallel noise characterization using generalized
Quantum Overlapping Tomography*— Diagonal Detector Overlapping Tomography.

1Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Multi—qubit.noise characterization
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= Method of efficient-ly chéracterizing readout noise:

— Perform parallel noise characterization using generalized
Quantum Overlapping Tomography*— Diagonal Detector Overlapping Tomography.

- From results of DDOT get structure of clusters and neighborhoods.
- If needed, refine a noise model with standard, local DDTs or restricted DDOTs.
— Construct a noise model.

1Phys. Rev. Lett. 124, 100401, J. Cotler, and F. Wilczek (2020)
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Experimental results - IBM, 15 qubits (clusters)
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Experimental results - IBM, 15 qubits (clusters and neighbours)
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= Problem: Requires reconstruction of generic noise matrix.

; Solutlon A
~ Real noise is unllkely to be generic - we can exploit locality of correlatlons

See other works on this:

— arXiv:2001.09980
M.R. Geller, M. Sun (Jan 2020)

— arXiv:2001.09980
K. E. Hamilton, T. Kharazi, T. Morris, A. J. McCaskey, R. S. Bennink, R.C. Pooser(Jun 2020) |,

— arXiv:2006.14044
S. Bravy| S. Sheldon, A. Kandala, D.C. Mckay,J M. Gambetta (Jun 2020)
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= Problem:
- Requires post-processing of exponentially big noise matrix
and exponentially b|g probability vectors.
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= Problem:
~ Requires post-processing of exponentially big noise matrix
and exponentially b|g probability vectors.

= "Solution”:

Focus on problems which are feasible.
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» Those which require estimation of marginal probability distributions
(for example - estimation of energy of local Hamiltonians).
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= Take global noise with local clusters and neighbors:
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. Check how it a~ffectfs Marginal-distributions:
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= And you can use itsinverse /| as a correction for that marginal.
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to the noiseless distribution (up to some error which we quantify).
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= And you can use itsinverse /| as a correction for that marginal.
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= In this way you obtain average noise matrix /| on marginal.
; : ' _—1 |
= And you can use itsinverse /| as a correction for that marginal.

= This will not perfectly reverse the noise, but it should bring us closer
to the noiseless distribution (up to some error which we quantify).
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= In this way you obtain average noise matrix /| on marginal.
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= And you can use itsinverse /| as a correction for that marginal.

= This will not perfectly reverse the noise, but it should bring us closer
to the noiseless distribution (up to some error which we quantify).
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= In this way you obtain average noise matrix /| on marginal.
; : : __,._1 |
= And you can use itsinverse /| as a correction for that marginal.

= This will not perfectly reverse the noise, but it should bring us closer
to the noiseless distribution (up to some error which we quantify).
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Noise-mitigation on marginals
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= In this way you obtain average noise matrix /| on marginal.
; : : __,._1 _
= And you can use itsinverse /| as a correction for that marginal.

= This will not perfectly reverse the noise, but it should bring us closer
to the noiseless distribution (up to some error which we quantity).
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Does it work in real life?
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* Proposition for benchmark of the noise model and error-mitigation:
— Prepare classical state which is a ground state of some local Hamiltonian.
e F?erfor’m noise-mitigation on marginals. | '
- Estimate energy and compare.

* We did it for 600 Hamiltonians encoding random MAX 2SAT
(clause density 4) instances and fully connected random 2- IocaI
Hamiltonians on IBM’s 15Q Melbourne device.
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Experimental results - IBM, 15 qubits (random 2-1ocal)
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Model of classical measurement noise which exploits locality of correlations.

Efficient characterization of the model using Diagonal Detector Overlapping

Tomography (which is generalized Quantum Overlapping Tomography).

- Successful noise-mitigation in experiments on 15 qubits.

Effects of approximate mitigation and statistical errors.

Effects of realistic readout noise on
Quantum Approximate Optimization Algorithm.

Statistical analysis of estimation of energy of local Hamiltonians.

Check out our GitHub repository: github.com/fbm2718/QREM
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