A robust approach to QUBO on the chimera topology

Witold Jarnicki

BEIT

KQIS, October 5th, 2021

Witold Jarnicki (BEIT)

Robust QUBO on chimera

KQIS, October 5th, 2021 1 / 25

The title

A robust approach to QUBO on the chimera topology

The plan

- Bit graph topologies ("chimera topology")
- QUBO problem statement ("QUBO")
- Some applications
- Obstacles for hardware
- Understanding the hardware
- Our reference solution ("robust approach")
- Scaling up

Naming

- V set of n := |V| variables (vertices, qubits).
- K_V complete graph on V.
- $E \subseteq K_V$ topology of edges (couplings).
- $S := \{0, 1\}^n$ bit states.

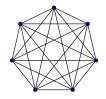
Naming

- V set of n := |V| variables (vertices, qubits).
- K_V complete graph on V.
- $E \subseteq K_V$ topology of edges (couplings).
- $S := \{0, 1\}^n$ bit states.

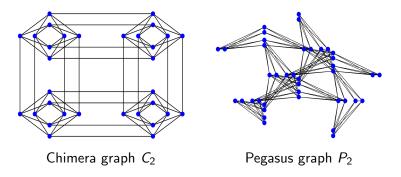
Conventions

- $V = \{0, 1, \dots, n-1\}.$
- $E = K_n := K_V$ complete graph.
- $E = C_k$ Chimera graph.
- $E = C_{k,\ell}$ Chimera fragment.
- $E = P_k$ Pegasus graph.

Complete graph K_7



Complete graph K_7



Witold Jarnicki (BEIT)

Weights

- $b: V \longrightarrow \mathbb{R}$ variable biases.
- $c: E \longrightarrow \mathbb{R}$ coupling weights.
- $\beta \in \mathbb{R}_{>0}$ Boltzmann distribution parameter.

Weights

- $b: V \longrightarrow \mathbb{R}$ variable biases.
- $c: E \longrightarrow \mathbb{R}$ coupling weights.
- $\beta \in \mathbb{R}_{>0}$ Boltzmann distribution parameter.

State functions

•
$$\mathcal{E}: S \longrightarrow \mathbb{R}$$
 — state energy,

$$\mathcal{E}(x) := \sum_{\alpha \in V} b(\alpha) x_{\alpha} + \sum_{\{\alpha, \beta\} \in E} c(\{\alpha, \beta\}) x_{\alpha} x_{\beta}.$$

- $W: S \ni x \longmapsto e^{-\beta \mathcal{E}(x)} \in \mathbb{R}_{>0}$ state weight.
- $Z := \sum_{x \in S} W(x)$ partition function.
- $p: S \ni x \longmapsto W(x)/Z \in (0,1]$ Boltzmann probability distribution.

Boltzmann distribution weights

- $W(x) := e^{-\beta \mathcal{E}(x)}$.
- Strongly prefers low energy states when sampling.
- May or may not find a global minimum.
- Used for Quantum Boltzmann Machines.

Some applications

Combinatorial problems

- Potentially lowest value of energy attained \iff Boolean formula satisfied.
- SAT.
- Factorization.

Some applications

Combinatorial problems

- SAT.
- Factorization.

Optimization problems

- Cost optimization.
- Max-variants of combinatorial problems e.g. MAX-SAT.

Some applications

Combinatorial problems

- SAT.
- Factorization.

Optimization problems

- Cost optimization.
- Max-variants of combinatorial problems e.g. MAX-SAT.

Boltzmann machines

"Here are some cats. Show me another cat."

Noisiness

- Low-order weights ignored in practice.
- No official data needs experimental research.

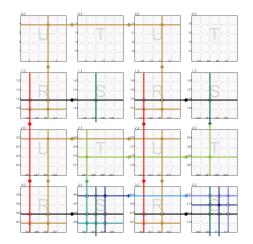
Noisiness

- Low-order weights ignored in practice.
- No official data needs experimental research.

Topology

- Most problems cannot be directly embedded in target topology.
- Bit chaining required.

Bit chaining



A 2-bit \times 2-bit \mapsto 4-bit factorization/multiplication circuit. Embedded into C_4 — colors correspond to logical bits.

Problems with bit chaining

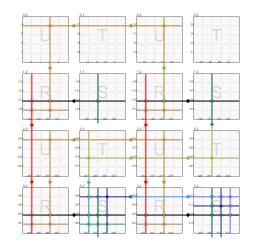
- Low-priority chaining \implies solutions cannot be mapped to logical bits.
- High-priority chaining ⇒ non-solutions (noisiness).
- Strongly limits the number of bits e.g. 2048-bit C_{16} can embed at most a 65-bit clique.
- Attempts at hardware-level chaining to counter these issues (Pegasus).

10/25

Questions

- How close to the ideal Boltzmann distribution are they?
- How close to the minimum energy they get?
- How noisy are they in general?

Let us prove that 3 is prime



A 2-bit \times 2-bit \mapsto 4-bit factorization/multiplication circuit.

Factorize 3 by sampling the circuit 1000 times

Attempt	$1 imes 3 (\mathcal{E}_{min})$	$3 imes 1$ (\mathcal{E}_{min})	failed (> \mathcal{E}_{min})
1	444	14	542
2	387	61	552
3	307	78	615
4	406	31	563
5	282	96	622
6	240	64	696
7	278	52	670
8	159	117	724
9	190	174	636
10	439	49	512

Use 10 rounds of random bit flips

Attempt	$1 imes 3 (\mathcal{E}_{min})$	$3 imes 1$ (\mathcal{E}_{min})	failed (> \mathcal{E}_{min})
1	189	65	746
2	193	67	740
3	230	90	680
4	160	91	749
5	225	54	721
6	232	111	657
7	280	60	660
8	162	76	762
9	166	90	744
10	204	96	700

Tailored example

- 2001 bits.
- Minimum theoretical energy -1000.
- 10000 samples.
- Sampled energy range [-690, -538].
- Random bit flips do not help, either.

Tailored example

- 2001 bits.
- Minimum theoretical energy -1000.
- 10000 samples.
- Sampled energy range [-690, -538].
- Random bit flips do not help, either.

However

- Not really a noisiness issue, as the theoretical energy distribution is binomial.
- Problem trivially solved by hybrid approaches involving local search.

15/25

Precision of $\beta \mathcal{E}$

Boltzmann distribution

- $W: S \ni x \longmapsto e^{-\beta \mathcal{E}(x)} \in \mathbb{R}_{>0}$ state weight.
- $Z := \sum_{x \in S} W(x)$ partition function.
- $p: S \ni x \mapsto W(x)/Z \in (0,1]$ Boltzmann probability distribution.

Precision of $\beta \mathcal{E}$

Boltzmann distribution

• $W: S \ni x \longmapsto e^{-\beta \mathcal{E}(x)} \in \mathbb{R}_{>0}$ — state weight.

•
$$Z := \sum_{x \in S} W(x)$$
 — partition function.

• $p: S \ni x \longmapsto W(x)/Z \in (0,1]$ — Boltzmann probability distribution.

Experiment

- Set variable bias to 0.
- Sample variable 10000 times.
- Repeat $10 \times$ for 2000 qubits, resulting in 20000 frequencies.

16 / 25

Precision of $\beta \mathcal{E}$

Boltzmann distribution

• $W: S \ni x \longmapsto e^{-\beta \mathcal{E}(x)} \in \mathbb{R}_{>0}$ — state weight.

•
$$Z := \sum_{x \in S} W(x)$$
 — partition function.

• $p: S \ni x \longmapsto W(x)/Z \in (0,1]$ — Boltzmann probability distribution.

Experiment

- Set variable bias to 0.
- Sample variable 10000 times.
- Repeat $10 \times$ for 2000 qubits, resulting in 20000 frequencies.

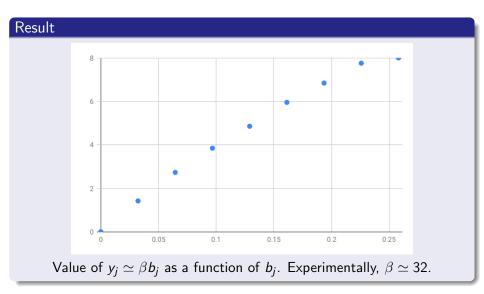
Result

- Frequency ranging from 30% to 70%.
- Value of $\beta \mathcal{E} = 0$ interpreted as one between [-0.8, 0.8].
- Resolution of $\beta \mathcal{E}$ seems to be even integers, but no finer.

Experiment

- Pick some bias values (b_1, \ldots, b_m) spanning [0, 1].
- Determine experimental probability p_j of getting value 1 by sampling multiple qubits with bias p_j , j = 1, ..., m (around half a million samples per j).
- Throw away outliers with probabilities too close to 0 or 1.
- As $p_j \simeq 1 1/(1 + e^{-\beta b_j})$, determine the experimental value y_j of βb_j by putting $y_j := -\ln(1/(1 p_j) 1)$.
- Plot y_j as a function of b_j and use linear regression to determine β .

Determining β



18 / 25

Random QUBO

Experiment

- Generate a QUBO instance on $C_{6,16}$ choosing biases and couplings uniformly among even numbers in [-30, 30].
- Compute the minimum energy value and its probability using the exact reference solver.
- Sample 100 thousand points from the hardware implementation.

Experiment

- Generate a QUBO instance on $C_{6,16}$ choosing biases and couplings uniformly among even numbers in [-30, 30].
- Compute the minimum energy value and its probability using the exact reference solver.
- Sample 100 thousand points from the hardware implementation.

Result

- The exact minimum energy of -12000 has probability ~ 0.09 in the Boltzmann distribution, assuming the value of $\beta = 32$ applied to the normalized biases.
- Sampling 100 thousand points failed to produce the minimum energy value. The minimum energy attained was -11992.

Questions

- How close to the ideal Boltzmann distribution are they?
- How close to the minimum energy they get?
- How noisy are they in general?

Questions

- How close to the ideal Boltzmann distribution are they?
- How close to the minimum energy they get?
- How noisy are they in general?

Answers

- Even in random cases, the probabilities seem to be off by many orders of magnitude.
- Sometimes the minimum is not found, even if the theoretical probability guarantees that.
- The noise of $\beta \mathcal{E}$ seems to be on the level of ±0.8, but rounding βE to even integers still produces results that we cannot explain.

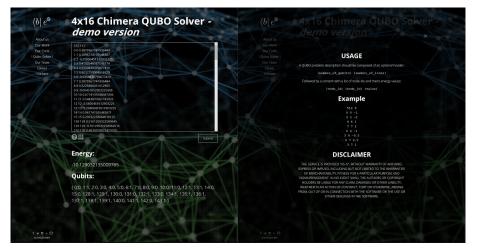
Methods

- Dynamic programming on bounded treewidth graphs.
- Cannot do full C₁₆.
- Uses some ideas by Alex Selby (minimum energy value).
- Computes much more using our new approach.

Current state for $C_{k,\ell}$ $(k, \ell \in \mathbb{N}, k \leq \ell)$

Capability	CPU	GPU
Maximum <i>k</i>	7	8
Typical runtime	~ 1 minute	$\sim 10~{ m seconds}$
Minimum energy value	$\mathcal{O}(\ell 2^{4k})$	
Minimum energy probability		$\mathcal{O}(\ell 2^{4k})$
Minimum energy state	$\mathcal{O}(\ell 2^{4k})$	$\mathcal{O}(\ell^2 2^{4k})$
Boltzmann sample		$\mathcal{O}(\ell^2 2^{4k})$
<i>m</i> Boltzmann samples	$\mathcal{O}(k\ell m + \ell^2 2^{4k})$	

Our QUBO exact reference solver



Online QUBO solver demo:

finds minimum energy value and state on $C_{4,16}$.

Witold Jarnicki (BEIT)

Robust QUBO on chimera

KQIS, October 5th, 2021

23 / 25

- Our exact solver does not scale that well.
- It can be used to validate hardware platforms or other heuristics.
- Biggest hope lies in hybrid local-search or MCMC solutions.