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The outline

Near-term quantum computing and error mitigation.
o Learning-based error mitigation.

o Enhancing power of error mitigation.

°

Improving resource efficiency of error mitigation.
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Near-term quantum computing and error mitigation
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o Near-term quantum computers are “
seriously affected by noise.
@ To obtain quantum advantage we c PP
need to mitigate effects of the Trial Step

noise.

o Error mitigation is challenging for Kandala et. al, Nature (2019)

large and deep quantum circuits ‘ ‘ ‘ ;
necessary for quantum advantage.
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Cli Data Regression (CDR)

Error mitigation with Clifford quantum-circuit data
Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

@ X - an observable of interest, |1) - a quantum circuit of interest.
o X5 = (Y |X|), Xl'fisy - the noisy expectation value.

GENERATE TRAINING DATA

© Choose near-Clifford classically
simulable training circuits @
Sy = {|éi)}-

{ Xinoisy} {Xgxacty
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Training circuits

@ Near-Clifford circuits with up to N = 50 — 80 non-Clifford gates can be
simulated classically.

@ Replace non-Clifford gates by Clifford gates.
@ An algorithm for IBM:

Rz(a) = S", S =Rz(n/2), n=0,1,2,3.
Rz (m/4)
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Clifford Data Regression (CDR)

@ X - an observable of interest, |1)) - a quantum circuit of interest.
o X% = (¢|X|v), X;f’isy - the noisy expectation value.

© Choose near-Clifford classically CITMIIRAIND, ARG DA

simulable training circuits
Sy ={l#1)}-

@ Construct a training set
n — {(an;)isy exact)} {x oy {Xgxact}
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Clifford Data Regression (CDR)

@ X - an observable of interest, |1) - a quantum circuit of interest.
o X5 = (Y|X|), X{L"isy - the noisy expectation value.

© Choose near-Clifford classically
simulable training circuits

Sy = {|éi)}-

@ Construct a training set
To = (X, X5},

@ Learn an ansatz for X

" .
xeact aIXnmsy + a,

argmin E (X;fact—alxgélw_&)z.
i
-2 ¢iET¢

o Corrects perfectly global
depolarizing noise

p = (1—p)p+ pl/(dimH)
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(GENERATE TRAINING DATA

@ i

S { X;'loisy } {Xgxacty

[LEARN TO CORRECT

\_ X noisy
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Clifford Data Regression (CDR)

@ X - an observable of interest, |1)) - a quantum circuit of interest.

o X7 = (p|X]|v), X;f’isy - the noisy expectation value.

Choose near-Clifford classically
simulable training circuits

Sy ={loi)}-

Construct a training set
n — {(anb’c')lsy’x,;jact}.
Learn an ansatz for X®@:

t .
XEXBC — aIXﬂOISy_"_a27

argmin Z (X

a2 D €Ty

exact

i

nois; 2
21X¢’_ y—az) .

Use the ansatz to correct X:L"isy_

Xi)xact — alxl?)oisy + a.
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(GENERATE TRAINING DATA

@

\ {X;misy} {Xfxact}

(LEARN TO CORRECT

X exact

X noisy

N
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QAOA for the quantum Ising model

@ The problem: Ground state simulation of a transverse-field 1D quantum
Ising model (g = 2).

He s %Y 22
J ()
@ The QAOA (Quantum Alternating Operator Ansatz) ansatz:

H=HitHo, h=—g) X th=-3 27,
J G"

|’l/)(/817’717- . -me’Yp)) = H eiﬁjHZei’YjHl(|+>)®07 |+>

Jj=p,p—1...,

EEE - 05—z

(D1 R2 () [ +—\U(28,—m/2,7/2)
1 | Rz(2)) HL{ U@28,-m/2,7/2)

Rz(27) U2, —n/2,7/2)
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QAOA for the quantum Ising model - hardware implementation

@ The QAOA ansatz is optimized to find the ground state of the Quantum

Ising model.

@ Local minima of the optimization are simulated with IBM’s Almaden
quantum computer.

@ A factor of 15 improvement obtained (60 CNOTs, 8 layers of CNOTSs).
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QAOA ground state simulation benchmark - scaling
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At least a factor of 10 improvement obtained.
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An application to quantum chemistr

Variational Quantum Eigensolver with Reduced Circuit Complexity

Yu Zhang,!* Lukasz Cincio,! Christian F. A. Negre,! Piotr Czarnik," Patrick Coles,!
Petr M. Anisimov,? Susan M. Mniszewski,® Sergei Tretiak,"* and Pavel A. Dub®

o Variational quantum eigensolvers
(VQE) search for ground states of
quantum many-body systems
minimizing energies of states
encoded by parametrized quantum

Exact ————

ﬂ/__/m"

E 1072

RAW e

a
Mitigated ——

circuits. V
[ 103 5
@ In collaboration with P. Dub 2
) [ TN o
(LANL) we applied CDR to
. - L L L 1077
benchmark potential of a novel o on 2§
VQE algorithm. CDR mitigation for VQE simulations of

o We obtained orders of magnitude LiH molecule with IBM Bogota.

improvement of energies for a
benchmark application of LiH
ground state simulations.
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Enhancing power of CDR

Unified approach to data-driven quantum error mitigation

Angus Lowe,'>* Max Hunter Gordon,> * Piotr Czarnik,®
Andrew Arrasmith,? Patrick J. Coles,* and Lukasz Cincio®*

@ Zero Noise Extrapolation (Temme, Bravyi, Gambetta - 2017) increases the noise
strength in a controlled manner to perform an extrapolation to the zero noise
limit:

)\j:Cj)\o, l=c<ca<---<cp

@ Richardson extrapolation has an error O(ASH):

XRichardson — Xn:)(noisy,j,yj7 (]_)
Jj=0

n n
Z"/j:l, Z'yjcjk:Ofork:L...,n.
j=0 j=0

@ Find coefficients of the Richardson ansatz (1) from near-Clifford circuits similar
to the circuit of interest.

Piotr Czarnik ing-based error mitigation for near-term quantum computers.



Enhancing power of CDR - variable noise CDR (vnCDR)

CONSTRUCT TRAINING CIRCUITS

© Choose training circuits as in
the case of CDR.

@ Multiply noise level
j=1,...,n asin the case of

circuit of interest Clifford substituted circuits

INCREASE NOISE

Zero Noise Extrapolation Ga ? —| EredbErooo
(Z N E) . —G} G v
.. Clifford substituted circuits at different noise levels
@ Construct a training set
i i GENERATE TRAINING SET LEARN NOISY TO EXACT MAPPING
7:1) — {chlsy,J XEXaCt}
T :

@ Learn a model for X®@: 3:1'
exact __ z : noisy, j
X - aJX . yl@
j

@ Use the model to correct
Xnoisy,j
v 7
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vnCDR benchmarks
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The ground state of a transverse Ising Q Q
model, 8-qubit circuits, an IBM Ourense Random quantum circuits, @ qubits,
noise model. an IBM Ourense noise model.

@ The new method (vnCDR) improves on performance of CDR and ZNE.
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Virtual Distillation (VD) - Koczor (2021), Huggins et al. (2021)

@ Uses M copies of a noisy state p to "distill” a purified approximation of the exact

one
Tr[p" X]

Te[pM]

@ Exponentially suppresses incoherent errors
201
p= > Nl (¥
i=0

(0| X|0) 2 O/ A0)M (il X [4)
Q_ + Q_ :
1+ 3250 (Ai/A0)M 1+ 320 (Ai/Ao)M

Xm =

Xy =
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Virtual distillation (VD)

(b) 0)— H] .. @—E
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10y Y{ P [0){ P 0)fpu} % - |0y par (o }—

Koczor (2020), Czarnik, Arrasmith, Cincio, Coles (2020)
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Enhancin

© ©6 00O

Unifying and benchmarking state-of-the-art quantum error mitigation techniques

Daniel Bultrini,"*2:* Max Hunter Gordon,* * Piotr Czarnik,!
Andrew Arrasmith,1:4 Patrick J. Coles,»4 and Lukasz Cincio® 4

Choose near-Clifford training circuits as for CDR.
Boost state preparation noise as for ZNE and vnCDR.
Perform VD on the training circuits.

Construct a training set Ty, = {th_/’,X;Ta“}.

Learn a model for X®act;

n Mmax

Xxexact o Z Z ajM)<jM~

j=0 M=1

Use the model to correct XTJ/')M.
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Benchmarking advanced approach
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Benchmarking advanced approach

p=4,Q =14
0.1 5 01
B 33
5] Oﬁe—e—e—e—o
] A
E X
N ] ESNEIN
0.0t} % Z 001} 3g=y
A N . Riog-p-g
< N N
Ngo N\ Y
S FiPremw=g S B a ]
= A\\ K| Mo
20,001 S £ 0001 *
< TNk oA
= 0.0004 L - i 50,0004 L - -
10° 10% 107 10% 10° 1010~ 10° 10° 107 10% 107 10
Niot Niog
p=064,Q =4
L 05 5 05
g & === =R==8=H
g P
8 =}
2 le=e==m=8—8=8 ¢
2 01 _f 0.1 a N A
R \ S AR DTN
: 2w N “w NS -4
< AN O "~
N = —o-noisy & vnCDR
SR a g —+ ZNE — UNITED
RESE NN B4 o VD
1 0.01 L — S=otl E 012 =
10° 10° 107 10% 10° 101 = 10° 10° 107 10° 10° 10"
Niot Niot

With better " performance ceilings” more shots are required to reach it.

Trapped-ion noise model: Colin J Trout et al 2018 New J. Phys. 20 043038
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Improving CDR shot-effici
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The ground state of 8-qubit XY model - clustering of the training circuits and its
effects on the quality of CDR error mitigation.
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Improving CDR shot-efficiency - harnessing symmetries of the system
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The ground state of 8-qubit XY model (2). Translational symmetry and the Hamming
weight preservation (U(1) symmetry) can be utilized to improve efficiency.

Piotr Czarnik Learning-based error mitigation for near-term quantum computers.



Real-hardware banchmarks
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Error for the half-chain correlators of the ground state of 6-qubit XY model
(60 CNOTs, 20 layers of CNOTs) and IBM Toronto plotted versus total error
mitigation shot-cost.
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Conclusions

@ Effects of the noise on the expectation values can be learned from training
circircuits similar to the circuit of interest.

@ Including additional information about noise effects enables better quality of the
learning.

@ Preventing clustering of the training data is crucial for learning with limited shot
resources.

@ Up to orders of magnitude improvement of results quality demonstrated with
real-world devices.

Piotr Czarnik Learning-based error mitigation for near-term quantum computers.



