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The outline

Near-term quantum computing and error mitigation.

Learning-based error mitigation.

Enhancing power of error mitigation.

Improving resource efficiency of error mitigation.
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Near-term quantum computing and error mitigation

Near-term quantum computers are
seriously affected by noise.

To obtain quantum advantage we
need to mitigate effects of the
noise.

Error mitigation is challenging for
large and deep quantum circuits
necessary for quantum advantage.

Kandala et. al, Nature (2019)
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Clifford Data Regression (CDR)

X - an observable of interest, |ψ〉 - a quantum circuit of interest.

X exact
ψ = 〈ψ |X |ψ〉, X noisy

ψ - the noisy expectation value.

1 Choose near-Clifford classically
simulable training circuits
Sψ = {|φi 〉}.
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Training circuits

Near-Clifford circuits with up to N = 50− 80 non-Clifford gates can be
simulated classically.

Replace non-Clifford gates by Clifford gates.

An algorithm for IBM:

RZ (α)→ Sn, S = RZ (π/2), n = 0, 1, 2, 3.
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Clifford Data Regression (CDR)

X - an observable of interest, |ψ〉 - a quantum circuit of interest.

X exact
ψ = 〈ψ |X |ψ〉, X noisy

ψ - the noisy expectation value.

1 Choose near-Clifford classically
simulable training circuits
Sψ = {|φi 〉}.

2 Construct a training set
Tψ = {(X noisy

φi
,X exact

φi
)}.
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Clifford Data Regression (CDR)

X - an observable of interest, |ψ〉 - a quantum circuit of interest.

X exact
ψ = 〈ψ |X |ψ〉, X noisy

ψ - the noisy expectation value.

1 Choose near-Clifford classically
simulable training circuits
Sψ = {|φi 〉}.

2 Construct a training set
Tψ = {(X noisy

φi
,X exact

φi
)}.

3 Learn an ansatz for X exact:

X exact = a1X
noisy + a2,

argmin
a1,a2

∑
φi∈Tψ

(X exact
φi
−a1X

noisy
φi
−a2)2.

Corrects perfectly global
depolarizing noise

ρ =⇒ (1− p)ρ+ p1/(dimH)
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Clifford Data Regression (CDR)

X - an observable of interest, |ψ〉 - a quantum circuit of interest.

X exact
ψ = 〈ψ |X |ψ〉, X noisy

ψ - the noisy expectation value.

1 Choose near-Clifford classically
simulable training circuits
Sψ = {|φi 〉}.

2 Construct a training set
Tψ = {(X noisy

φi
,X exact

φi
}.

3 Learn an ansatz for X exact:

X exact = a1X
noisy + a2,

argmin
a1,a2

∑
φi∈Tψ

(X exact
φi
−a1X

noisy
φi
−a2)2.

4 Use the ansatz to correct X noisy
ψ .

X exact
ψ = a1X

noisy
ψ + a2.
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QAOA for the quantum Ising model

The problem: Ground state simulation of a transverse-field 1D quantum
Ising model (g = 2).

H = −g
∑
j

Xj −
∑
〈j,j′〉

ZjZj′

The QAOA (Quantum Alternating Operator Ansatz) ansatz:

H = H1 + H2, H2 = −g
∑
j

Xj , H1 = −
∑
〈j,j′〉

ZjZj′ ,

|ψ(β1, γ1, . . . , βp, γp)〉 =
∏

j=p,p−1...,1

e iβjH2e iγjH1 (|+〉)⊗Q , |+〉 =
1√
2

(|0〉+|1〉).

• • U(2β,−π/2, π/2)

RZ(2γ) • • U(2β,−π/2, π/2)

• • RZ(2γ) U(2β,−π/2, π/2)

RZ(2γ) U(2β,−π/2, π/2)
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QAOA for the quantum Ising model - hardware implementation

The QAOA ansatz is optimized to find the ground state of the Quantum
Ising model.

Local minima of the optimization are simulated with IBM’s Almaden
quantum computer.

A factor of 15 improvement obtained (60 CNOTs, 8 layers of CNOTs).
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QAOA ground state simulation benchmark - scaling

Gα = αG noisy + (1− α)G exact α =
4

p

At least a factor of 10 improvement obtained.
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An application to quantum chemistry

Variational quantum eigensolvers
(VQE) search for ground states of
quantum many-body systems
minimizing energies of states
encoded by parametrized quantum
circuits.

In collaboration with P. Dub
(LANL) we applied CDR to
benchmark potential of a novel
VQE algorithm.

We obtained orders of magnitude
improvement of energies for a
benchmark application of LiH
ground state simulations.
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CDR mitigation for VQE simulations of
LiH molecule with IBM Bogota.
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Enhancing power of CDR

Zero Noise Extrapolation (Temme, Bravyi, Gambetta - 2017) increases the noise
strength in a controlled manner to perform an extrapolation to the zero noise
limit:

λj = cjλ0, 1 = c0 < c1 < · · · < cn.

Richardson extrapolation has an error O(λn+1
0 ):

XRichardson =
n∑

j=0

Xnoisy,jγj , (1)

n∑
j=0

γj = 1,
n∑

j=0

γjc
k
j = 0 for k = 1, . . . , n.

Find coefficients of the Richardson ansatz (1) from near-Clifford circuits similar
to the circuit of interest.
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Enhancing power of CDR - variable noise CDR (vnCDR)

1 Choose training circuits as in
the case of CDR.

2 Multiply noise level
j = 1, . . . , n as in the case of
Zero Noise Extrapolation
(ZNE).

3 Construct a training set
Tψ = {X noisy,j

φi
,X exact

φi
}.

4 Learn a model for X exact :

X exact =
∑
j

ajX
noisy,j .

5 Use the model to correct
X noisy,j
ψ .
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vnCDR benchmarks

noisy ZNE CDR vnCDR
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The ground state of a transverse Ising
model, 8-qubit circuits, an IBM Ourense

noise model.
Random quantum circuits, Q qubits,

an IBM Ourense noise model.

The new method (vnCDR) improves on performance of CDR and ZNE.
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Virtual Distillation (VD) - Koczor (2021), Huggins et al. (2021)

Uses M copies of a noisy state ρ to ”distill” a purified approximation of the exact
one

XM =
Tr[ρMX ]

Tr[ρM ]
.

Exponentially suppresses incoherent errors

ρ =

2Q−1∑
i=0

λi |ψi 〉〈ψi |,

XM =
〈ψ0|X |ψ0〉

1 +
∑2Q−1

i=0 (λi/λ0)M
+

∑2Q−1
i=1 (λi/λ0)M〈ψi |X |ψi 〉

1 +
∑2Q−1

i=0 (λi/λ0)M
.
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Virtual distillation (VD)

Koczor (2020), Czarnik, Arrasmith, Cincio, Coles (2020)
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Enhancing power of CDR and vnCDR - UNITED

1 Choose near-Clifford training circuits as for CDR.

2 Boost state preparation noise as for ZNE and vnCDR.

3 Perform VD on the training circuits.

4 Construct a training set Tψ = {X jM
φi
,X exact
φi
}.

5 Learn a model for X exact:

X exact ≈
n∑

j=0

Mmax∑
M=1

ajMXjM .

6 Use the model to correct X jM
ψ .
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Benchmarking advanced approaches

|0〉 v(α1, β1, γ1)
XX(δ1)

|0〉 v(α2, β2, γ2) v(α5, β5, γ5)
XX(δ3)

|0〉 v(α3, β3, γ3)
XX(δ2)

v(α6, β6, γ6)

|0〉 v(α4, β4, γ4)

v(α, β, γ) = RZ (α)RY (β)RZ (γ)

More general ansaetze result in better ”performance ceilings”.
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Benchmarking advanced approaches

With better ”performance ceilings” more shots are required to reach it.

Trapped-ion noise model: Colin J Trout et al 2018 New J. Phys. 20 043038
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Improving CDR shot-efficiency

The ground state of 8-qubit XY model - clustering of the training circuits and its
effects on the quality of CDR error mitigation.
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Improving CDR shot-efficiency - harnessing symmetries of the system

H =

Q−1∑
i=1

(XiXi+1 + YiYi+1) + XQX1 + YQY1. (2)

O1 = X1XQ/2+1,O2 = X2XQ/2+2, . . . ,OQ/2 = XQ/2+1XQ ,

OQ/2+1 = Y1YQ/2+1, . . . ,ON = YQ/2+1YQ ,

〈O1〉 = 〈O2〉 = . . . 〈OQ〉.

The ground state of 8-qubit XY model (2). Translational symmetry and the Hamming
weight preservation (U(1) symmetry) can be utilized to improve efficiency.
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Real-hardware banchmarks

Error for the half-chain correlators of the ground state of 6-qubit XY model
(60 CNOTs, 20 layers of CNOTs) and IBM Toronto plotted versus total error

mitigation shot-cost.
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Conclusions

Effects of the noise on the expectation values can be learned from training
circircuits similar to the circuit of interest.

Including additional information about noise effects enables better quality of the
learning.

Preventing clustering of the training data is crucial for learning with limited shot
resources.

Up to orders of magnitude improvement of results quality demonstrated with
real-world devices.
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