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Vehicle Routing Problem and its variants

Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?



Vehicle Routing Problem and its variants

Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?

Capacitated Vehicle Routing Problem (CVRP): VRP with bounded capacities of vehicles.

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW): VRP with bounded capacities of
vehicles and with time windows.

(all these problems are NP-hard)



Solving combinatorial optimization problems

In combinatorial optimization problems, we search for the best of many possible combinations.
Optimization problems include scheduling challenges, such as “Should | ship this package on this truck or
the next one?” or “What is the most efficient route a traveling salesperson should take to visit different

cities?”

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Solving combinatorial optimization problems

In combinatorial optimization problems, we search for the best of many possible combinations.
Optimization problems include scheduling challenges, such as “Should | ship this package on this truck or
the next one?” or “What is the most efficient route a traveling salesperson should take to visit different
cities?”

Physics can help solve these sorts of problems because we can frame them as energy minimization
problems. A fundamental rule of physics is that everything tends to seek a minimum energy state.
Objects slide down hills; hot things cool down over time. This behavior is also true in the world of
quantum physics. Quantum annealing simply uses quantum physics to find low-energy states of a
problem and therefore the optimal or near-optimal combination of elements.

Simply: finding minimal “energy state” for a given optimization problem (encoded as entanglement of qubits).

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Adiabatic quantum computers

An adiabatic process - a process that does not involve the transfer of heat or matter into or out of a
thermodynamic system. In an adiabatic process, energy is transferred to the surroundings only as work.
(Source: https://en.wikipedia.org/wiki/Adiabatic_process)
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Adiabatic quantum computers

An adiabatic process - a process that does not involve the transfer of heat or matter into or out of a
thermodynamic system. In an adiabatic process, energy is transferred to the surroundings only as work.
(Source: https://en.wikipedia.org/wiki/Adiabatic_process)

Adiabatic quantum computer:

“First, a (potentially complicated) Hamiltonian is found whose ground state describes the solution to the
problem of interest. Next, a system with a simple Hamiltonian is prepared and initialized to the ground
state. Finally, the simple Hamiltonian is adiabatically evolved to the desired complicated Hamiltonian.
By the adiabatic theorem, the system remains in the ground state, so at the end the state of the system
describes the solution to the problem.” (Source: https://en.wikipedia.org/wiki/Quantum_annealing)

Adiabatic quantum computing has been shown to be polynomially equivalent to conventional
quantum computing in the circuit model. (“Adiabatic Quantum Computation is Equivalent to Standard
Quantum Computation”, D. Aharonov et al, https://arxiv.org/pdf/quant-ph/0405098.pdf)
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Quantum annealing

Hamiltonian of the corresponding Ising model

H=(1-3s)H;+ st\
/ ground state is the

ground state easy to prepare solution of the problem

Adiabatic theorem:
if we change s slow enough the final state will be the solution of our problem

In practice: s can be changed by modifying a strength of the magnetic field.



Ising Model

The Ising model of ferromagnetism traditionally used in statistical mechanics. Variables are “spin up” I&T) and “spin
down” (|), states that correspond to +1 and -1 values (atomic “spins” or magnetic dipole moments_s). elationships
between' the spins, represented by couplings, are correlations or anti-correlations. The objective function
(Hamiltonian) expressed as an Ising model is as follows:

N N

N
Eising(8) = § h;s; + E E J5.58i8;
i=1 i=1 j=i+1

wheje the linear coefficients corresponding to qubit biases are h, and the quadratic coefficients corresponding to coupling strengths
are J. .
1)

Finding the minimum of a nonplanar Ising formulation is NP-hard problem for classical computers.
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Quantum Unconstrained Binary Optimization

Quadratic Unconstrained Binary Optimization (QUBO) problems are traditionally used in computer science. Variables are

TRUE and FALSE, states that correspond to 1 and 0 values. A QUBO problem is defined using an upper-diagonal matrix Q,

which is an N x N upper-triangular matrix of real weights, and x, a vector of binary variables, as minimizing the function:

= Z Qiizi + Z Qi jTix;
1 <]

where the diagonal terms Q,, are the linear coefficients and the nonzero off-diagonal terms are the quadratic coefficients Q .
This can be expressed more conC|ser as

min .I'TQ$
ze{0,1}"
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Vehicle Routing Problem and its variants

Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?
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Vehicle Routing Problem and its variants

Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?

Capacitated Vehicle Routing Problem (CVRP): VRP with bounded capacities of vehicles.

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW): VRP with bounded capacities of
vehicles and with time windows.

(all these problems are NP-hard)
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Solving Vehicle Routing Problem - notation

T={1, 2,... M} -identifiers of trucks/vehicles
V={1,2,..., N, N+1} - identifiers of vertices/nodes (N+1 - depot, 1,2,3,...,N - customers)

Ci,j - cost of travel from node i to node j (fori,j € V), Ci,i =0

XK= 1 if in a given setting the vehicle i visits the node j as k-th location on its route (0 otherwise)

(iis from the set T, j from V, k is from {0,1,2,3,....,N+1})
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Solving Vehicle Routing Problem - notation

T={1, 2,... M} -identifiers of trucks/vehicles
V={1,2,..., N, N+1} - identifiers of vertices/nodes (N+1 - depot, 1,2,3,...,N - customers)

Cij - cost of travel from node i to node j (fori,j € V), C..=0

XK= 1 if in a given setting the vehicle i visits the node j as k-th location on its route (0 otherwise)
(iis from the set T, j from V, k is from {0,1,2,3,....,N+1})
Observations:

1. For each vehicle i: x. INH1.0 =1, X0~ 0 for j <N + 1 (the depot is always the initial (0-th) location)

2. Ifx,, =1forsomel, thenforW>L:x., =0forj<N+1andx

on each route and each car stays in the depot after reaching it)

N+ = 1 (the depot is always the last location
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Solving Vehicle Routing Problem - QUBO formulation

O = Z Zlm n, 1CN+1 n + Z Zlm n, NCN N+1T

me—=1"1m=1 =1 =1

—1 N+l N+1

+ E f o j - j iy 1771 Z 7256771 J n’+1cl J

m,:1 =1 =1 Jg=1

e The first component of the sum C is a sum of all costs of travels from the depot to the first visited node -
the first section of each car’s route.

e The second is a cost of the last section of a route (to depot) in a special case when a single car serves all
N orders (only in such a case the component can be greater than 0).

e The last part is the cost of all other sections of routes.
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Solving Vehicle Routing Problem - QUBO formulation

Let’s consider a binary function:

A Yo on ¥) = (Y Y+ oty - 1)2-1

where y. € {0,1} fori € {1,..., n}. The minimum value of A(y,, Y, ..., ¥,) is equal to -1 and this
value can be achieved only if exactly one ofy., y,, ..., y_is equal to 1.

17



Solving Vehicle Routing Problem - QUBO formulation

To assure that each delivery is served by exactly one vehicle and exactly once and
that each vehicle is in exactly one place at a given time, the following term should be included in
our QUBO formulation:

)= Z A(Z1 81, T2k Ty 53 r1,k,2y---sTM,k,N)+

l
+ E E 4 lmln Im’n ------ U, '\-I—ln)

m=1n=
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Solving Vehicle Routing Problem - QUBO formulation

Full QUBO Solver (FQS)

By definition of VRP, QUBO representation of this optimization problem is

QUBOvap = Ay s O s w0

for some constants A, and A,, which should be properly set to ensure that the solution found by
quantum annealer minimizes the cost C and satisfies the aforementioned constraints (Q).
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Solving Vehicle Routing Problem

Average Partition Solver (APS)

We decrease the number of variables for each vehicle by assuming that every vehicle serves
approximately the same number of orders - up to A+L deliveries, where A is the total number of
orders divided by the number of vehicles (N/M) and L is a parameter (called “limit radius”), which
controls the number of orders (in practice, we usually want our fleet to be evenly loaded).

The number of variables is lower which simplifies computations.
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Solving Capacitated Vehicle Routing Problem

DBSCAN Solver (DBSS)

Hybrid algorithm which combines quantum approach with a classical algorithm (Recursive
DBSCAN).

DBSS uses recursive DBSCAN as a clustering algorithm with limited size of clusters. Then, TSP
is solved by FQS separately (we can just assume the number of vehicles equal to 1).

If the number of clusters is equal to (or lower than) the number of vehicles, the answer is known
immediately. Otherwise, the solver runs recursively considering clusters as deliveries, so that
each cluster contains orders which in the final result are served one after another without leaving
the cluster.

We also concluded that by limiting the total sum of weights of deliveries in clusters, this algorithm
can solve CVRP if all capacities of vehicles are equal.

21



Solving Capacitated Vehicle Routing Problem

Solution Partitioning Solver (SPS)

This algorithm divides TSP solution found by another algorithm (e.g., FQS) into consecutive
intervals, which are the solution for CVRP.

Letd,, d,, ..., d be the TSP solution for N orders, let P, be a capacity of the vehicle v, let Wi
be the sum of weights of orders d, d+1, d+2, ..., dj (in the order corresponding to TSP
solution) and let costi,j be the total cost of serving only orders d,, d.+1, ..., dj. Also, let dpi;s be
the cost of the best solution for orders d,d,d, .., dand for the set of vehicles S. Now, the

dynamic programming formula for solving CVRP is given by:

dp;,s = min dp; g\ {1 + cost;iq
WS = eso<i By icp, \PS\C) i+t

where costi,j =0 and W, = 0 fori>j.
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Solving Capacitated Vehicle Routing Problem

Solution Partitioning Solver (SPS)

To speed up computations, we can apply a heuristic:

1. Instead of set S of vehicles, consider a sequence Vs Vo ooy V), of vehicles and assume that
we attach them to deliveries in such an order.

2. Now, our dynamic programming formula is given by:

(]pi.{'vl....,-vk} = 0<j<i Lljl—:i <p {(lpj.{'vl,..._.gvk_l} + ("("-)Sfj-i-l.'i}
e s i o By 1 = l'k

3. To count this dynamic effectively, we can observe that:

Vicii<k<m (dpj—1.v,+cost;i)—(dpj—1.v,+costji—1) = Ci—1:i+Ci N+1—Ci—1,N+1

We can now select some random permutations of vehicles and perform dynamic programming
for each of them.
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Experiments - setup

Goal: compare results of different algorithms (quantum and classical) on several datasets.

For quantum/hybrid algorithms, we ran experiments using D-Wave’s Leap platform and 2
solvers: gbsolv (on QPU or CPU) and hybrid solver (on QPU and CPU at the same time).

In case of classical algorithms, we tested Simulated Annealing (SA), Bee Algorithm (BEE),
Evolutionary Annealing (EA), DBSCAN with simulated annealing (DBSA).
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Experiments - datasets

We prepared several datasets:

e Christofides1979 - a standard benchmark dataset for CVRP, well-known and frequently
studied by the scientific community (14 tests with different number of vehicles, capacities
and number of orders).

e A dataset built by us based on a realistic road network of Belgium, acquired from the
OpenStreetMap service (51 tests).

25



Experiments - datasets

Christofides1979 - a standard benchmark dataset for CVRP, well-known and frequently studied
by the scientific community (14 tests with different number of vehicles, capacities and number
of orders).

Test name |Nr of vehicles|Capacity |Nr of orders
CMTI11 7 200 120
CMTI12 10 200 100
CMTI13 11 200 120
CMT14 11 200 100
CMT3 8 200 100
CMT6 6 160 50
CMT7 11 140 73
CMTS 9 200 100
CMT9 14 200 150

Parameters of instances of Christofides1979 used in our experiments.
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Experiments - datasets

A dataset built by us based on a realistic road network of Belgium, acquired from the
OpenStreetMap service (51 tests): we considered different numbers of orders (from 1 to 200)
and different locations of orders and depots.

Test Number of orders
small-0 2
small-1 2
small-2 2
small-3 |
small-4 2
small-5 S
small-6 6
small-7 S
small-8 4
small-9 6

medium-0 20
medium-1 26
medium-2 27
medium-3 24

Examples of test cases from realistic road networks
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Results of experiments

Test  |vehicles|FQS CPU|FQS QPU|FQS Hybrid|APS CPU|APS Hybrid
small-0 1.2 11286 11286 11286 11286 11286
small-1 1 10643 10643 10643 10643 10643

2 10643 10643 10643 12379 12379
3 10643 - 10643 - -
small-2 1 21311 21311 21311 21311 21311
2 21311 - 21311 24508 24508
3 22192 - 21311 = -
small-3 1 18044 18044 18044 18044 18044
2 20819 - 18033 22193 22193
3 22843 - 18033 - -
small-4 1 15424 15424 15424 15424 15424
2 17364 - 15424 19472 19472
3 17364 - 15424 - -
small-5 1 10906 10906 10906 10906 10906
2 11676 = 10906 13480 13480
3 11754 - 10906 - =
small-6 1 20859 20859 20859 20859 20859
2 26735 - 20859 26735 26735
3 27110 - 20859 - -

Results for different quantum and hybrid algorithms on some small datasets



Results of experiments

Test  |vehicles|FQS CPU|FQS QPU|FQS Hybrid|APS CPU|APS Hybrid| DBSS CPU
medium-0 I 20774 - 21775 20774 21775 24583
2 36966 - 29879 25737 25217 27994
3 28226 27237 34185
medium-1 1 29868 - 29423 29868 20423 27606
2 50639 - 39485 30820 31129 31346
3 - - - 33376 32018 32588
medium-2 1 37045 - 35208 37045 35208 29442
2 55579 - 36511 33235 33163 32947
3 - - - 36600 32569 34480
medium-3 1 30206 - 20422 30206 20422 31092
2 51787 - 35774 31428 30273 33790
3 - - - 35994 33627 33712
medium-4 1 21257 - 20762 21257 20762 21435
2 34379 - 25470 22410 22722 22885
3 - - - 23599 22176 25446
medium-5 1 23013 - 21642 23013 21462 21737
2 36149 - 22041 22775 23076 23403
3 - - - 24899 22386 24336
medium-6 1 23804 - 24664 23804 23804 23926
2 35826 - 24490 24265 25178 25510
3 - - - 27032 23364 25122

Results for different quantum and hybrid algorithms on some medium datasets
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Results of experiments

vehicles|APS CPU|DBSS CPU

big-0] 1 80084 | 71594

2 97286 | 71051
big-1] 1 157660 | 146828

2 | 206782 | 14920p
big-2| 1 168646 | 154105
big-3[ 1 85873 | 62236
big-4| 1 156411 | 129279

Comparison of results for Average Partition Solver and DBSCAN Solver on big test cases.



Results of experiments

vehicles|capacity |SPS (CPU)|DBSS (CPU)
big-0| 2 100 70928 73508
2 85 72295 73189
2 80 75150 Not valid
3 100 71320 76717
3 70 71251 78012
3 55 Not valid 76807
5 100 71740 Not valid
5 50 78726 91066
5 40 85976 Not valid
big-1 2 100 150608 158631
2 80 150608 152946
2 65 150804 156188
3 100 151525 153673
3 60 153190 152854
3 45 164055 Not valid
5 100 151930 168789
5 40 156242 165271
5 30 174519 176935

Comparison of DBSCAN Solver and Solution Partitioning Solver (SPS) run on CPU on big test
cases with various capacities.



Results of experiments

type |deliveries| SPS |Simul. Ann.| Bee [Evolution

clusteredl-1 |average| 57 69850 | 66379 | 60876 | 48923
best 57 69080 | 52119 | 56358 | 48152

clusteredl-2 |average| 55 77173 | 74341 81438 | 54719
best 33 75530 | 59947 | 68772 | 53490

groupl-1 |average| 42 158919 156217 |153495| 137989
best 42 |155388| 146526 |142774| 135593

groupl-2 |average| 54 171732 145380 [145325| 137626
best 54 1165043 141065 |140947| 136307

range-6-1 |average| 47 71670 | 68003 | 67234 | 59937
best 47 68459 | 62312 | 64404 | 59827

range-6-2 |average| 50 80490 | 84380 | 83915 | 73651
best 50 79640 | 79574 | 85917 | 73051

range-8-12-1 |average| 50  [142008| 146553 |142835| 129069
best 50  |140170] 136369 |127372| 126555

range-8-12-2 |average| 50 146798| 137628 |145332| 129048
best 50 |143598| 135493 |136776| 128803

range-8-12-3 |average| 46 105544 105051 | 98366 | 92792
best 46 [101577] 99004 | 94423 | 91921

range-8-12-4 |average| 51 147993| 143309 [148900| 128316
best 51 145559| 140088 |128575| 124405

range-8-12-5 |average| 50 146719| 143516 |145685| 134162
best 50 |143993| 139784 |139796| 133245

range-8-12-6 |average| 50 146984| 148194 |150121| 136326
best 50  |141467| 138781 |139400| 134692

range-5-1 |average| 50 81728 | 68900 | 69052 | 67896
best 50 72527 | 67984 | 68022 | 67691

range-5-2 |average| 50 81759 | 69342 | 68564 | 67981
best 50 76868 | 67958 | 67780 | 67716

Results of Solution Partitioning Solver
compared with results for classical algorithms
run on artificially generated test cases.
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Results of experiments

Test name| SPS | SA | BEE | EA |DBSA
CMTI11 [25.54|23.62(36.18]16.52| 19.94
CMT12 |26.84|53.06(20.24(20.68| 21.37
CMT13 |25.97|86.72(34.66(35.05( 19.44
CMT14 |26.83|52.52(20.23(20.23( 22.8
CMT3 |25.13]| 48.3 |28.38|28.82| -
CMT6 |17.58| 48.3 115.42|28.82| 15.82
CMT7 |29.42| 41.4 |27.89|31.68| 23.18
CMTS8 |26.5|51.16|26.67|28.09| 19.4
CMT9 |34.14|76.34|44.25|42.81| -

Comparison of results achieved by Solution Partitioning Solver (SPS) and classical algorithms
(SA - simulated annealing, BEE- Bee algorithm, EA - evolutionary annealing, DBSA - DBSCAN
with simulated annealing) on a benchmark dataset Christofides79.



Conclusions

It doesn’t make sense to run experiments on QPU for large test cases

SPS (with gbsolv run on CPU) gives the best results among “quantum” algorithms

We compared SPS with some classical metaheuristics for CVRP well-known in the
scientific literature (e.g., simulated annealing (SA), bee algorithm (BEE), evolutionary
annealing (EA), DBSCAN with simulated annealing (DBSA)) - it usually gives a bit
worse (but sometimes better) results.

Github repository: htips://github.com/dwave-examples/D-Wave-VRP
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Future plans

e Develop our algorithms further in order to solve CVRPTW (and other variants of VRP).

e Investigate for which scenarios the hybrid algorithms give the best results comparing to
classical algorithms (for which scenarios we may expect some advantages?).

e Investigating algorithms to solve CVRPTW using “circuit-based” quantum computers.
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Route Activation Solver (RAS)

Route Activation Solver is another such exact solver that allows us to encode information about the edges connecting two nodes
and the order in which they are visited by the vehicles to formulate a Quadratically Constrained Quadratic Program (QCQP)
model of the Vehicle Routing Problem.

Variables: x; ; (binary),y; ; (binary) and t; (integer)

v = 1, iff the edge (i, j) is traversed by a vehicle
o, otherwise

[y iff the it" node is visited by the k' vehicle
Yik 0, otherwise
t; € {1...N} time taken for any vehicle to reach the i*"* node

Objective Function:
N N
min Cijxij
Constraints:

1. Each client node must have exactly one edge directed away from it and exactly one edge directed towards it.

N N
Z Xi’]'—_-l Vi Z xi,j=1 V]
Jj=0,j#i i=0,i#j

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma 38



Cluster-Route Heuristics

- Cluster First, Route Second

« These methods can be summed up as a combination of two phases:

« Clustering Phase: For the first phase, we split the client node set into
k clusters. Clustering may be done classically, or using a quantum
computer.

« Routing Phase: For the second phase, each cluster is assigned to a
separate vehicle. And the corresponding routes are then found via solving
the TSP. The TSP solution is done on a quantum computer via quantum
annealing

« Examples: DBSCAN Solver, Max-Cut Partitioning Solver

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma 39



Max-Cut Partitioning Solver (MPS)

- Cluster via Max-Cut, Route via TSP

Phase 1: Clustering via Max-k-Cut formulation.

Generalization of the Max Cut problem to k clusters.

o = 1, if node i is assigned to the jt* cluster
LI 0, otherwise

Objective Function:

min E Cijxikxjk

i,),k

inj:]' Vi

J

Constraints:

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma
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Max-Cut Partitioning Solver (MPS)

- Cluster via Max-Cut, Route via TSP

» Phase 2: Solving the Travelling Salesman Problem.

o)1, if the salesman is at node i at the jt" time-step
J 0, otherwise

» Objective Function:

N-1 N N
mlnz CO nxnl + Z Cn Oan + ZZ Ci,jxi,nxj,n+1
n=11i=0j=0
- Constraints:
N N
Z =1Vi in,j=1vf
= i=0

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma
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The GPS Solver

Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou

It becomes important to finding a good QUBO formulation that minimizes the number of variables to be used especially in the
current NISQ era. The GPS Solver was primarily motivated by this goal to find a suitable exact formulation of TSP. The authors
of the paper [2] who proposed this formulation have extended it to a VRP formulation.

.

Rather than keeping track of the exact time step at which a vehicle visits a node, the binary variables in this model contain
information about the order of traversal of the nodes by a single vehicle as well as the order in which different vehicles traverse

the nodes.

+ Variables: x;;, . (binary), a;; (binary)

O Vehicle 1
3 O Vehicle 2

P 1, iff city i is reached before city j, and the edge (i, j) is not travelled 4
L0k 0, otherwise
= 1, iff vehicle k traverses the edge (i, j) and hence i is reached before j
LELE ™, otherwise ¢
¥
P 1, iff city j is reached before city i, and the edge (j, i) is not travelled 1
Li2k =, otherwise 8 .
X5,7,12 =
0 = 1, iff city i is reached before city j considering every vehicle X1 001 =1
b 0, otherwise Xao01=LXeans =1

X6201 =1 a6 =1

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma 42



The GPS Solver

Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou

« Objective Function:

« Constraints:

1. For each i, j, q, one and only one of the possibilities must be met forr.
2
in,j,r,k =1V l,] * l,k
r=0

2. Each vehicle must
a) leave the depot in the beginning and reach the depot in the end.

N N
ZXOJ.Lk =1 Vk in,m,k =1 Vk
j=1 i=1
b) arrive at each city exactly once and leave each city exactly once.
M N M N
Z Z Xpjie=1 Vj€{l..N} Z z Xpjie=1 Vi€ {l..N}
k=1i=0,i#j k=1j=0,j=i

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma 43



The GPS Solver

Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou

3. The it" city can either be reached earlier or later than the j" city.

M

Z Xijok tXijax=apj-M Vie{l..N}Lj€{1..N}Li#j
k=1
ajtaj; =1 Vi jE{1..N}i#]j

4. Ifa vehicle k arrives in the qt" city, then it must leave the q'" city.

N
Xpagik | 1— Z Xgrak |=0 Vp€{0..N}Lq€{l..N},p+#q,k€{l..M}

r=0,r#q

5. A vehicle can either arrive at the i*" city before the j'" city or vice-versa.
Xi,j,o,k + xi'}"l'k + Xj.i,O,k + xj,i,l,k =1 Vv l,] (S {1 N},I * ],k (S {1 M}

44
6. If the it" city is reached before the j™ city, and the jt* city is reached before the k'™ city, then the i*" city must be reached before the k" city.

ai‘j-aj_k —ai‘j -ai‘k - aj'k -ai,k +ai,k -al-,k =0 Vl,],kE{l N},l ¢],]¢k,k¢l

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma 44



Numerical Experiments
Characterizing Solver Performance

Approximation Ratio for Various Solvers

5 Clients - 3 Vehides

5 Clients - 2 Vehides

5 Clients - 1 Vehides

4 Clients - 3 Vehides
4 Clients - 2 Vehides

4 Clients - 1 Vehides

3 Clients - 3 Vehides
3 Clients - 2 Vehides .
3 Clients - 1 Vehides ;
0.6 0.8 1

FQS GPS MPS WSPS

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma



Numerical Experiments
Characterizing Solver Performance

e Qubit Complexity: Number of logical qubits required as a
function of the number of client nodes N.

FQS
RAS
MPS
SPS
GPS

Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma

O(N?)
O(N?)
O(N3/2)
O(N?)
O(N?)

O(N3)
O(N?)
O(N?)
O(N?)
O(N3)
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[ Ansatz %\
-8 g 0 g

Joo—fows—

Parameterized quantum

\ circuit /

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans

VQA components

~
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\ be measured j

[CIassicaI optimizem
{3

Adjust the Ansatz
parameters to minimize

\measurement resuly
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Variational Quantum Eigensolver (VQE)

R e T T

. o ke ] o ] z
— o ¥ ;
& o oo o ke ek 5 | 2
i 1 ) § ! m (D} r—{
. :l ) ! | o p— m
: It —leflenk 8 5 .S
< Lt ' re :._‘*
& i ) o —HE a s
' t K -
D—q : :I :' :
= » o Jro{n o] o 6] s
|----,\ ------------------------------------ l‘ ------------------------------------ 1
T HMO

Optimization

0 the cost function is defined as the expectation value of the Hamiltonian computed in the trial state

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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Layer-VQE

¢ Layer 0 | ¢ Layer 0 Layer 1 |
AR, Y ) 0 We increment the ansatz
qo _._-_n_,, : q0 —-—R_., — R Ry — .
& B - @ before reaching convergence.

0 Initializing with small random
numbers may be useful to
o avoid local minima and speed
> up the
e optimization in general.

Update
HMO
Update

] 0 We initialize the added layer

‘“ i *“9 [ =] such that it evaluates to

_ o P N o B N E identity to ensure that the
95 —4 Ry 95 — Ry e Ry Ry . ) .
, _____________________________ J quality of the solution does not
Y ' decrease at each step.

https://arxiv.org/abs/2102.05566

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans 49


https://arxiv.org/abs/2102.05566

[]

Source: “

Why choose L-VQE over VQE for solving VRP?

Unlike VQE, which has an ansatz fixed upfront, L-VQE starts from a simple
and shallow hardware efficient ansatz with a small number of parameterized
gates and then adds layers to the ansatz systematically.

This strategy allows us to make the ansatz more expressive and reduces the
optimization overhead.

Furthermore, VQE is likely to stuck in local minima, as opposed to LVQE which
higher tendency to find the optimal solution for combinatorial optimization
problems.

Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid EI Maouaki, Atharva Vidwans 50



L-VQE vs VQE

1 Initial experiments show that L-VQE can outperform VQE
1 We are also conducting experiments with F-VQE and combined approach
(LF-VQE)

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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Other approaches

1 “Unconstrained Binary Models of the Travelling Salesman Problem Variants for Quantum
Optimization”, Ozlem Salehi, Adam Glos, Jarostaw Miszczak

1 “Solving the Traveling Salesperson Problem using TensorFlow Quantum”, Justyna Zawalska

1 “QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver Surrogates”, Tian Huang,
Siong Thye Goh, Sabrish Gopalakrishnan, Tao Luo, Qianxiao Li, Hoong Chuin Lau

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans 52



Future work

1 Scalability - graph clustering / coarsening
1 CVRPTW

1 Preparation of a book (Packt)

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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Thank you for your attention!

->  Questions?
€ p.gora@mimuw.edu.pl
€ warsaw.quantum@amail.com
> www:
€ http://www.mimuw.edu.pl/~pawelg
€ http://www.qaif.org

“Logic can get you from A to B, imagination will take you everywhere”
A. Einstein

“The sky is NOT the limit”
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