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Agenda
➔ Definition of VRP and its variants

➔ Quantum annealing approaches to solve VRP
◆ Explanation of quantum annealing
◆ QUBO formulations / solvers
◆ Experiments within the GLAD project

➔ QIntern / QResearch project
◆ Comparison of QUBO formulations
◆ VQE and other approaches

➔ Plans for the future research
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Vehicle Routing Problem and its variants
Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest 
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with 
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?
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Vehicle Routing Problem and its variants
Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest 
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with 
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?

Capacitated Vehicle Routing Problem (CVRP): VRP with bounded capacities of vehicles.

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW): VRP with bounded capacities of 
vehicles and with time windows.

(all these problems are NP-hard) 
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Solving combinatorial optimization problems
In combinatorial optimization problems, we search for the best of many possible combinations. 
Optimization problems include scheduling challenges, such as “Should I ship this package on this truck or 
the next one?” or “What is the most efficient route a traveling salesperson should take to visit different 
cities?”

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Solving combinatorial optimization problems
In combinatorial optimization problems, we search for the best of many possible combinations. 
Optimization problems include scheduling challenges, such as “Should I ship this package on this truck or 
the next one?” or “What is the most efficient route a traveling salesperson should take to visit different 
cities?”

Physics can help solve these sorts of problems because we can frame them as energy minimization 
problems. A fundamental rule of physics is that everything tends to seek a minimum energy state. 
Objects slide down hills; hot things cool down over time. This behavior is also true in the world of 
quantum physics. Quantum annealing simply uses quantum physics to find low-energy states of a 
problem and therefore the optimal or near-optimal combination of elements.

Simply: finding minimal “energy state” for a given optimization problem (encoded as entanglement of qubits).

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Adiabatic quantum computers
An adiabatic process - a process that does not involve the transfer of heat or matter into or out of a 
thermodynamic system. In an adiabatic process, energy is transferred to the surroundings only as work.
(Source: https://en.wikipedia.org/wiki/Adiabatic_process)

https://en.wikipedia.org/wiki/Adiabatic_process
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Adiabatic quantum computers
An adiabatic process - a process that does not involve the transfer of heat or matter into or out of a 
thermodynamic system. In an adiabatic process, energy is transferred to the surroundings only as work.
(Source: https://en.wikipedia.org/wiki/Adiabatic_process)

Adiabatic quantum computer:
“First, a (potentially complicated) Hamiltonian is found whose ground state describes the solution to the 
problem of interest. Next, a system with a simple Hamiltonian is prepared and initialized to the ground 
state. Finally, the simple Hamiltonian is adiabatically evolved to the desired complicated Hamiltonian. 
By the adiabatic theorem, the system remains in the ground state, so at the end the state of the system 
describes the solution to the problem.” (Source: https://en.wikipedia.org/wiki/Quantum_annealing)

Adiabatic quantum computing has been shown to be polynomially equivalent to conventional 
quantum computing in the circuit model. (“Adiabatic Quantum Computation is Equivalent to Standard 
Quantum Computation”, D. Aharonov et al, https://arxiv.org/pdf/quant-ph/0405098.pdf)

https://en.wikipedia.org/wiki/Adiabatic_process
https://en.wikipedia.org/wiki/Quantum_annealing
https://arxiv.org/pdf/quant-ph/0405098.pdf
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Quantum annealing

In practice: s can be changed by modifying a strength of the magnetic field.

Hamiltonian of the corresponding Ising model
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Ising Model
The Ising model of ferromagnetism traditionally used in statistical mechanics. Variables are “spin up” (↑) and “spin 
down” (↓), states that correspond to +1 and −1 values (atomic “spins” or magnetic dipole moments). Relationships 
between the spins, represented by couplings, are correlations or anti-correlations. The objective function 
(Hamiltonian) expressed as an Ising model is as follows:

where the linear coefficients corresponding to qubit biases are hi, and the quadratic coefficients corresponding to coupling strengths 
are Ji,j.

Finding the minimum of a nonplanar Ising formulation is NP-hard problem for classical computers.
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Quantum Unconstrained Binary Optimization
Quadratic Unconstrained Binary Optimization (QUBO) problems are traditionally used in computer science. Variables are 

TRUE and FALSE, states that correspond to 1 and 0 values. A QUBO problem is defined using an upper-diagonal matrix Q, 

which is an N x N upper-triangular matrix of real weights, and x, a vector of binary variables, as minimizing the function: 

where the diagonal terms Qi,i are the linear coefficients and the nonzero off-diagonal terms are the quadratic coefficients Qi,j. 
This can be expressed more concisely as
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Vehicle Routing Problem and its variants
Input: we have a directed graph with non-negative costs assigned to edges.

Travelling salesman problem (TSP): we have N selected vertices in the graph (customers). What is the shortest 
possible route that visits all of them and returns to the origin vertex (depot)?

Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with 
minimal cost) set of (up to M) routes which (in total) visit all the selected vertices and start and end in the depot?
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Vehicle Routing Problem (VRP): we have N selected vertices in the graph (customers). What is the optimal (with 
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Capacitated Vehicle Routing Problem (CVRP): VRP with bounded capacities of vehicles.

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW): VRP with bounded capacities of 
vehicles and with time windows.

(all these problems are NP-hard) 
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Solving Vehicle Routing Problem - notation
T = {1, 2,... ,M}  - identifiers of trucks/vehicles

V = {1, 2,... , N, N+1} - identifiers of vertices/nodes (N+1 - depot, 1,2,3,...,N - customers)

Ci,j - cost of travel from node i to node j (for i,j ∈ V), Ci,i = 0

xi,j,k = 1 if in a given setting the vehicle i visits the node j as k-th location on its route (0 otherwise)
 
(i is from the set T, j from V, k is from {0,1,2,3,....,N+1})
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Solving Vehicle Routing Problem - notation
T = {1, 2,... ,M}  - identifiers of trucks/vehicles

V = {1, 2,... , N, N+1} - identifiers of vertices/nodes (N+1 - depot, 1,2,3,...,N - customers)

Ci,j - cost of travel from node i to node j (for i,j ∈ V), Ci,i = 0

xi,j,k = 1 if in a given setting the vehicle i visits the node j as k-th location on its route (0 otherwise)
 
(i is from the set T, j from V, k is from {0,1,2,3,....,N+1})

Observations:

1. For each vehicle i: xi,N+1,0 = 1, xi,j,0 = 0 for j < N + 1 (the depot is always the initial (0-th) location)

2. If xi,N+1,L = 1 for some L, then for W > L: xi,j,W = 0 for j < N + 1 and xi,N+1,W = 1 (the depot is always the last location 
on each route and each car stays in the depot after reaching it)
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Solving Vehicle Routing Problem - QUBO formulation

● The first component of the sum C is a sum of all costs of travels from the depot to the first visited node - 
the first section of each car’s route. 

● The second is a cost of the last section of a route (to depot) in a special case when a single car serves all 
N orders (only in such a case the component can be greater than 0). 

● The last part is the cost of all other sections of routes.
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Solving Vehicle Routing Problem - QUBO formulation

Let’s consider a binary function:

A(y1, y2, …, yn) = (y1+ y2+ …+ yn - 1)2 -1

where yi ∈ {0,1} for i ∈ {1,…, n}. The minimum value of A(y1, y2, …, yn) is equal to -1 and this 
value can be achieved only if exactly one of y1, y2, …, yn is equal to 1.
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Solving Vehicle Routing Problem - QUBO formulation

To assure that each delivery is served by exactly one vehicle and exactly once and
that each vehicle is in exactly one place at a given time, the following term should be included in 
our QUBO formulation:
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Solving Vehicle Routing Problem - QUBO formulation

Full QUBO Solver (FQS)

By definition of VRP, QUBO representation of this optimization problem is

for some constants A1 and A2, which should be properly set to ensure that the solution found by
quantum annealer minimizes the cost C and satisfies the aforementioned constraints (Q).
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Solving Vehicle Routing Problem
Average Partition Solver (APS)

We decrease the number of variables for each vehicle by assuming that every vehicle serves 
approximately the same number of orders - up to A+L deliveries, where A is the total number of 
orders divided by the number of vehicles (N/M) and L is a parameter (called “limit radius”), which 
controls the number of orders (in practice, we usually want our fleet to be evenly loaded). 

The number of variables is lower which simplifies computations.



21

Solving Capacitated Vehicle Routing Problem
DBSCAN Solver (DBSS)

Hybrid algorithm which combines quantum approach with a classical algorithm (Recursive 
DBSCAN).

DBSS uses recursive DBSCAN as a clustering algorithm with limited size of clusters. Then, TSP 
is solved by FQS separately (we can just assume the number of vehicles equal to 1).

If the number of clusters is equal to (or lower than) the number of vehicles, the answer is known 
immediately. Otherwise, the solver runs recursively considering clusters as deliveries, so that 
each cluster contains orders which in the final result are served one after another without leaving 
the cluster.

We also concluded that by limiting the total sum of weights of deliveries in clusters, this algorithm 
can solve CVRP if all capacities of vehicles are equal.
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Solving Capacitated Vehicle Routing Problem
Solution Partitioning Solver (SPS)

This algorithm divides TSP solution found by another algorithm (e.g., FQS) into consecutive
intervals, which are the solution for CVRP.

Let d1, d2, …, dN be the TSP solution for N orders, let Pv be a capacity of the vehicle v, let wi,j 
be the sum of weights of orders di, di+1, di+2, ... , dj (in the order corresponding to TSP 
solution) and let costi,j be the total cost of serving only orders di, di+1, ... , dj. Also, let dpi;S be 
the cost of the best solution for orders d1, d2, d3, …, di and for the set of vehicles S. Now, the 
dynamic programming formula for solving CVRP is given by:

where costi,j = 0 and wi,j= 0 for i > j.
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Solving Capacitated Vehicle Routing Problem
Solution Partitioning Solver (SPS)

To speed up computations, we can apply a heuristic:
1. Instead of set S of vehicles, consider a sequence v1, v2, ..., vM of vehicles and assume that 

we attach them to deliveries in such an order.
2. Now, our dynamic programming formula is given by:

3. To count this dynamic effectively, we can observe that:

We can now select some random permutations of vehicles and perform dynamic programming
for each of them.
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Experiments - setup

Goal: compare results of different algorithms (quantum and classical) on several datasets.

For quantum/hybrid algorithms, we ran experiments using D-Wave’s Leap platform and 2 
solvers: qbsolv (on QPU or CPU) and hybrid solver (on QPU and CPU at the same time).

In case of classical algorithms, we tested Simulated Annealing (SA), Bee Algorithm (BEE), 
Evolutionary Annealing (EA), DBSCAN with simulated annealing (DBSA).
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Experiments - datasets

We prepared several datasets:

● Christofides1979 - a standard benchmark dataset for CVRP, well-known and frequently 
studied by the scientific community (14 tests with different number of vehicles, capacities 
and number of orders).

● A dataset built by us based on a realistic road network of Belgium, acquired from the 
OpenStreetMap service (51 tests).
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Experiments - datasets

Christofides1979 - a standard benchmark dataset for CVRP, well-known and frequently studied 
by the scientific community (14 tests with different number of vehicles, capacities and number 
of orders).

 

Parameters of instances of Christofides1979 used in our experiments.
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Experiments - datasets
A dataset built by us based on a realistic road network of Belgium, acquired from the 
OpenStreetMap service (51 tests): we considered different numbers of orders (from 1 to 200) 
and different locations of orders and depots.

Examples of test cases from realistic road networks 
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Results of experiments

Results for different quantum and hybrid algorithms on some small datasets
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Results of experiments

Results for different quantum and hybrid algorithms on some medium datasets
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Results of experiments

Comparison of results for Average Partition Solver and DBSCAN Solver on big test cases.
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Results of experiments

Comparison of DBSCAN Solver and Solution Partitioning Solver (SPS) run on CPU on big test 
cases with various capacities.
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Results of experiments

Results of Solution Partitioning Solver 
compared with results for classical algorithms 
run on artificially generated test cases.
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Results of experiments

Comparison of results achieved by Solution Partitioning Solver (SPS) and classical algorithms 
(SA - simulated annealing, BEE- Bee algorithm, EA - evolutionary annealing, DBSA - DBSCAN 
with simulated annealing) on a benchmark dataset Christofides79.
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Conclusions
● It doesn’t make sense to run experiments on QPU for large test cases

● SPS (with qbsolv run on CPU) gives the best results among “quantum” algorithms

● We compared SPS with some classical metaheuristics for CVRP well-known in the 
scientific literature (e.g., simulated annealing (SA), bee algorithm (BEE), evolutionary 
annealing (EA), DBSCAN with simulated annealing (DBSA)) - it usually gives a bit 
worse (but sometimes better) results.

● Github repository: https://github.com/dwave-examples/D-Wave-VRP 

https://github.com/dwave-examples/D-Wave-VRP
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Future plans
● Develop our algorithms further in order to solve CVRPTW (and other variants of VRP).

● Investigate for which scenarios the hybrid algorithms give the best results comparing to 
classical algorithms (for which scenarios we may expect some advantages?).

● Investigating algorithms to solve CVRPTW using “circuit-based” quantum computers.
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Route Activation Solver (RAS)

 

38Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  



Cluster-Route Heuristics
 - Cluster First, Route Second

 

39 Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  



Max-Cut Partitioning Solver (MPS)
 - Cluster via Max-Cut, Route via TSP

40Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  

 



Max-Cut Partitioning Solver (MPS)
 - Cluster via Max-Cut, Route via TSP

41Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  

 



The GPS Solver
 Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou
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42Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  
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Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  

The GPS Solver
 Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou
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The GPS Solver
 Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou
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Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  



Numerical Experiments
Characterizing Solver Performance

45

45Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  
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Solver Name Best Case Complexity Worst Case 
Complexity

FQS           O(N2)                 O(N3)

RAS           O(N2)                 O(N2)

MPS           O(N3/2)                 O(N2)

SPS           O(N2)                 O(N2)

GPS           O(N2)                 O(N3)

● Qubit Complexity: Number of logical qubits required as a 
function of the number of client nodes N.

Numerical Experiments
Characterizing Solver Performance

46Source: “Heuristic QUBO Formulations for solving the Vehicle Routing Problem using Quantum Annealing”, Shantom Borah, Asish Kumar Mandoi, Avneesh Verma  



47

VQA components

Classical optimizerAnsatz Measurement 
scheme

 

Objective 
function

Computed from the 
measurement results

Specifies the operators to 
be measured

Parameterized quantum 
circuit

Adjust the Ansatz 
parameters to minimize 
the objective function

 

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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Variational Quantum Eigensolver (VQE)

� the cost function is defined as the expectation value of the Hamiltonian computed in the trial state
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Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans



49

Layer-VQE

� We increment the ansatz 
before reaching convergence.

� Initializing with small random 
numbers may be useful to 
avoid local minima and speed 
up the
optimization in general.

� We initialize the added layer 
such that it evaluates to 
identity to ensure that the 
quality of the solution does not 
decrease at each step.
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https://arxiv.org/abs/2102.05566 

Step 1 Step 2

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans

https://arxiv.org/abs/2102.05566
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� Unlike VQE, which has an ansatz fixed upfront, L-VQE starts from a simple 
and shallow hardware efficient ansatz with a small number of parameterized 
gates and then adds layers to the ansatz systematically.

� This strategy allows us to make the ansatz more expressive and reduces the 
optimization overhead. 

� Furthermore, VQE is likely to stuck in local minima, as opposed to LVQE which 
higher tendency to find the optimal solution for combinatorial optimization 
problems. 

Why choose L-VQE over VQE for solving VRP?

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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� Initial experiments show that L-VQE can outperform VQE
� We are also conducting experiments with F-VQE and combined approach 

(LF-VQE)

L-VQE vs VQE

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans
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� “Unconstrained Binary Models of the Travelling Salesman Problem Variants for Quantum 
Optimization”, Özlem Salehi, Adam Glos, Jarosław Miszczak

� “Solving the Traveling Salesperson Problem using TensorFlow Quantum”, Justyna Zawalska

� “QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver Surrogates”, Tian Huang, 
Siong Thye Goh, Sabrish Gopalakrishnan, Tao Luo, Qianxiao Li, Hoong Chuin Lau

� …

Other approaches

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans



53

� Scalability - graph clustering / coarsening

� CVRPTW

� Preparation of a book (Packt)

Future work

Source: “Solving Vehicle Routing Problem using Variational Quantum Eigensolver and its variants”, Walid El Maouaki, Atharva Vidwans



➔ Questions?
◆ p.gora@mimuw.edu.pl 
◆ warsaw.quantum@gmail.com

➔ www: 
◆ http://www.mimuw.edu.pl/~pawelg 
◆ http://www.qaif.org  

“Logic can get you from A to B, imagination will take you everywhere” 
A. Einstein

“The sky is NOT the limit”

Thank you for your attention!

mailto:p.gora@mimuw.edu.pl
mailto:warsaw.quantum@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.qaif.org

