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Motivations

▶ How can we use quantum computing/quantum annealing in a
wide range of pattern recognition tasks supported by machine
learning?

▶ What are the main limitations today in terms of problem size,
solutions quality, speed of different quantum computing
architectures?

▶ How do hybrid (quantum-classical) algorithms compare to
classical approaches for simple and more complicated
real-world problems?
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Motivations

training data generated output

quantum enhanced machine learning model

parameter fitting sampling
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What is a Restricted Boltzmann Machine (RBM)

▶ Restricted Boltzmann Machine (RBM) is a machine learning
model introduced by Paul Smolensky in 1986, and rose to
prominence after Geoffrey Hinton and collaborators invented
fast learning algorithms for them in the mid-2000.

▶ RBM is a stochastic, generative machine learning model that
can learn the underlying probability distribution of a given
dataset.

▶ Unsupervised learning algorithms like RBMs are commonly
used for feature extraction, dimensionality reduction, topic
modeling or generating new data samples e.g. images, videos
or voice samples.

▶ Learning an RBM corresponds to fitting its parameters such
that the distribution represented by the RBM models the
distribution underlying the training dataset.
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Definition of an RBM

An RBM is a complete bipartite graph with two groups of nodes called
visible v and hidden h.

Nodes in both visible and hidden layers can take binary values.

∀vi∈vvi ∈ { 0, 1 }
∀hj∈hhj ∈ { 0, 1 }

The visible layer (of size n) corresponds to the data points, while the
hidden layer (of size m) can be treated like an unknown random variable.

M. Slysz, M. Subocz, K. Kurowski (Poznan Supercomputing and Networking Center) 5/34



Definition of an RBM

Each node from the visible layer is connected by a weighted connection
with each node in the hidden layer.

Each edge connecting nodes i and j corresponds to a weight Wij . Each
node in the visible layer corresponds to a bias value ai and each node in
the hidden layer corresponds to a bias value bj .

Weight matrix W of size n×m and bias vectors a of size n and b of size
m are parameters subject to learning.
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Energy function of an RBM

An RBM is an energy-based, probabilistic model, which means that
there is a scalar value assigned to each possible state.
The energy function for an RBM is given by the following equation:

E (v ,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i ,j

Wijvihj

Probability value of a given state (v ,h) is described as:

p(v ,h) =
1

Z
e−E((v ,h))

where Z is a partition function, which in general is hard to
compute.

Z =
∑
(v ,h)

e−E((v ,h))

as the number of all possible states grows exponentially with RBM
size (O (2n+m)).

M. Slysz, M. Subocz, K. Kurowski (Poznan Supercomputing and Networking Center) 7/34



RBM learning process - classical assumptions

Classically, this limitation has been evaded by assuming independence of
variables.

p(h|v) =
∏
j

p(hj |v)

p(v |h) =
∏
i

p(vi |h)

Under this assumption, given the values from the visible layer (e.g. the
training data), much simpler formulas for the conditional probabilities of
the layers can be derived:

p(hj = 1|v) = σ(bj +
∑
i

Wijvi )

p(vi = 1|h) = σ(ai +
∑
j

Wijhj)

where σ denotes the Sigmoid function, commonly used as an activation
function in feed forward artificial neural networks, and is defined as
follows:

σ(x) =
1

1 + e−x
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RBM learning algorithm - Contrastive Divergence

Using these properties, we can propose a classical learning algorithm,
which alternately samples both visible and hidden layers based on the
results of the previous iteration.

Starting from the input of the learning data x given to the layer v , we
are able to sample the layer h, then on its basis the layer v ′ and further
the layer h′.

Continuing this process, one can iteratively reach v (t),h(t) for any
number of iterations t.
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RBM learning algorithm - training objective

Our goal is for the RBM to return results similar to data points from the
training set in subsequent iterations t.

For this purpose, we need to define a loss function which maximizes the
probability that each pixel in the generated vector v (t) is equal to the
training example x .

Equivalently minimizing the the negative log likelihood function seems to
be the natural choice for the cost function L:

L(x) =
1

T

T∑
t

− log p(v (t) = x)
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RBM learning algorithm - Stochastic Gradient Descent

To minimize the cost function we used a well known algorithm called
Stochastic Gradient Descent (SGD).

The idea of SGD is to take repeated small steps in the opposite direction
of the gradient of the function at the current point, because this is the
direction of the steepest descent.

The gradient of the loss function must be computed w.r.t. model
parameters θ. In this case, the model parameters are W , a and b.

∂L

∂θ
=

∂ (− log p (v))

∂θ
= Eh

[
∂E (v ,h)

∂θ

∣∣∣∣ v = x
]
− Ev ,h

[
∂E (v ,h)

∂θ

]
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Parameter update rule

∂ (− log p (v))

∂θ
= Eh

[
∂E (v ,h)

∂θ

∣∣∣∣ v = x
]
− Ev ,h

[
∂E (v ,h)

∂θ

]
The equation for the gradient consists of two parts called positive and
negative phases.

The first part dependents on the input data and for parameter θ = Wij

can be calculated as hj · vi .

The second part dependents on the model and is hard to compute
classically. However, using the Gibbs sampling method introduced earlier

we can approximate this value by the expression h
(t)
j · v (t)

i after t
sampling steps.
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Parameter update rule

The update rule for the W matrix is then:

W k+1 = W k + α
(
h · vT − h(t) · v (t)T

)
k

where α is the learning rate. Analogously, the update rule for the bias
vectors a and b are:

ak+1 = ak + α
(
v − v (t)

)
k

bk+1 = bk + α
(
h − h(t)

)
k
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Further extensions

In practice t = 1 is often used to reduce computation time, as it is
empirically shown that it is often enough for the training process,
however this take may take more iterations to achieve convergence.

W k+1 = W k + α
(
h · vT − h

′
· v

′T
)
k

ak+1 = ak + α
(
v − v

′
)
k

bk+1 = bk + α
(
h − h

′
)
k

Furthermore, one can use more advance machine learning techniques to
enhance the learning process such as:

▶ gradient with momentum,

▶ learning rate decay,

▶ early stopping,

▶ persistent-CD.
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RBM learning algorithm - summary

1. Enter input data x onto the visible layer v .

2. Conditionally sample h, conditionally sample v ′, conditionally
sample h′.

3. Calculate the positive and negative phases of the gradient.

4. Update model parameters W , a and b.
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Quantum Extension to the RBM (QRBM)

Problems of the classical RBM:

▶ Partition function Z hard to compute.

▶ Assume independence of variables.

▶ Inaccurate sampling using classical methods.

The main idea is to replace the sampling step with a quantum annealing
based sampling. This should be a natural step as RBM is an energy
based model, so quantum annealing fits perfectly into the basic concept
of the algorithm.

▶ Sample from the actual probability distribution.

▶ No additional assumptions.

▶ An ideal random number generator.
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QUBO

RBM’s energy function:

E (v ,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

Wijvihj

D-wave’s Quantum Annealing device provides an efficient way to find
minimum of such a function. In order to do that, a QUBO (Quadratic
Unconstrained Binary Optimization) equation needs to be constructed:

f (x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj

The quantum annealing is a physical process that can efficiently traverse
the energy landscape by taking advantage of effects such as quantum
tunneling to find the global minimum of an energy function.
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RBM - changes to the algorithm

Instead of classically sampling h, v ′, h′ using the conditional probabilities

p(hj = 1|v) = σ(bj +
∑
i

Wijvi )

p(vi = 1|h) = σ(ai +
∑
j

Wijhj)

we can sample the probability distribution with the quantum annealer
(D-Wave). In each step we define the Q matrix depending on the model
parameters.
To sample h:

Q = −
m∑
j

((
n∑
i

(Wij · vi ) + bj

)
· hj

)
To sample v :

Q = −
n∑
i

 m∑
j

(Wij · hj) + ai

 · vi


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MNIST dataset

We tested our model on the well-known MNIST dataset. MNIST is a
dataset of handwritten digit images with 60000 training samples and
10000 testing samples. It is a popular machine learning benchmark
dataset which consists of images of size 28 × 28 pixels each.
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Preprocessing

Before feeding the data to the model, we had to perform some
pre-processing steps, due to the fact that an RBM can only process
binary data.

We transformed the original MNIST images to binary representation,
using a threshold of 100 pixel brightness out of 0 ÷ 255 greyscale.

Next, we had to flatten the images, so they could fit onto the
1-dimensional RBM visible layer of length n = 28 × 28 = 784.
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Result quality measure - MSE

To monitor the quality of training processes, we used a popular MSE
(Mean Squared Error) measure between the input image which activates
the sampling process and the generated image. The two images were
compared pixel by pixel and the MSE value was then normalized by
dividing it by the image size to fit between 0 and 1.

MSE =
1

n

n∑
i=1

(Yi − Ŷi )
2
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Learning process

The plot has an L-shaped curve, typical for machine learning problems,
which drops rapidly at the beginning of the learning process and then
gradually decreases in the remaining epochs. However, there are some
fluctuations because the MSE is not an exact measure of the quality of
the model.
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Basic experiments - single digit ’0’

After 500 epochs the MSE error was not decreasing further, so we
assumed that the Quantum RBM (QRBM) has been trained. Example
digit ’0’ generated by the trained QRBM with the MSE = 0.067.
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Classical comparison

Image generated by the QRBM.

Image generated by the classical
RBM (from the scikit-learn library)
of the same size and
hyperparameters.
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Further experiments - two digits

After obtaining promising results with low MSE errors, we wanted to
further enhance the model by adding more digits to the training dataset.
For example, for training the QRBM on a dataset containing 2 digits ’0’
and ’1’ we got results.
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Further experiments - hidden layer size

For the 2 digit dataset we experimented with the size of the hidden layer.
For next experiments, we chose m = 60 for the hidden layer size, as it
returned the best normalised MSE rate.
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Further experiments - more digits

However, after increasing the number of digits in the dataset the output
images are becoming more and more blurry. The result aquired from the
model trained on a dataset containing all 10 digits were hard to identify.

The reason behind this was that the model was overfitting, as choosing
the sample with the lowest energy was correlated with an image which is
a mix of all 10 digits.
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Solution - chain strength

The chain strength is a crucial control parameter available in D-Wave
architecture responsible for ensuring that results follow given restrictions.
When a chain connects two qubits, they are supposed to have the same
binary value. If the opposite is true, the chain is broken, which may lead
to suboptimal results.
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Chain strength

All QUBO weights are autoscaled to values between -1 and 1 together
with the chain strength value. Increasing the chain strength may result in
a more distributed range of solutions, as original punishments become
less precise and more prone to thermal noise.

Usually, D-Wave’s quantum annealer is used as a solver for optimization
problems, which can quickly find a (sub)optimal solution by choosing a
sample with the lowest energy. However, we are interested in the whole
energy landscape describing the probability distribution rather than just
the lowest energy eigenstate.
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Chain strength - experimental results

When trained on a low number of digits, the algorithm yields the best
results with a low chain strength value. When the number of digits
grows, it turns out that higher chain strength values perform better.
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Experimental results D-Wave 2000Q vs Advantage

Standard resolution image
(28 × 28) on D-Wave Advantage.

Low resolution image (14 × 14) on
D-Wave 2000Q. The hidden layer
size was also restricted to m ≈ 50.
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Conclusions

▶ We proposed, implemented, trained and validated experimentally a
Quantum Enhanced RBM (QRBM) on the MNIST dataset.

▶ The advantage of using the D-Wave’s quantum annealer, is that we can
quickly acquire samples from a complicated probability distribution,
without further assumptions for the model.

▶ For low number of different digits in the training set, the QRBM gave
promising results as it generated images of digits with low MSE score.

▶ However, increasing the number of digits caused the model to overfit. We
solved this problem, by tuning the chain strength parameter, which
effected in getting a more evenly distributed sample.

▶ Our research additionally dives into the topic of tuning other RBM
hyperparameters, e.g. by conducting experiments on the best hidden layer
size, or applying advanced machine learning techniques like momentum or
learning rate decay.

▶ We also compared the differences in capabilities of D-Wave’s architecture
between the old 2000Q and the new Advantage systems. The Advantage
system allows more variables to fit on a quantum computer, thanks to the
greater connectivity of the Pegasus graph.
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QRBM - GitHub repo - code and notebook.

https://github.com/mareksubocz/QRBM.

M. Slysz, M. Subocz, K. Kurowski (Poznan Supercomputing and Networking Center) 33/34

https://github.com/mareksubocz/QRBM


PSNC IBM Quantum HUB

https://quantum.psnc.pl

First Workshop on Quantum Computing and Communication
at PPAM’22 (September 11-14, 2022, Gdańsk, Poland),

Call for papers/presentations, extended deadline 20 May 2022.
More information at: https://quantum.psnc.pl/wqcc22/
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