

Software-aided analysis of quantum games

Piotr Kotara and Tomasz Zawadzki Institute of Computer Science AGH, Kraków, Poland

Game theory

Game theory is the study of mathematical models of strategic interactions among rational agents.

By Enzoklop - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27958688

Pure and mixed strategies

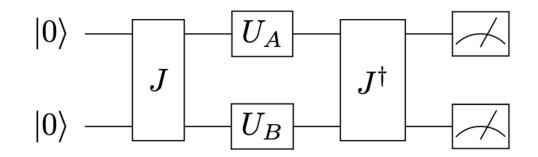
A mixed strategy is an assignment of a probability to each pure strategy.

Prisoner's Dilemma

The prisoner's dilemma is a standard example of a game analyzed in game theory that shows why two completely rational individuals might not cooperate, even if it appears that it is in their best interests to do so.

	Player 2 cooperates	Player 2 defects
Player 1 cooperates	(-1,-1)	(-3,0)
Player 1 defects	(0,-3)	(-2,-2)

Quantum games – EWL schema



Parameterizations

We can parametrize an arbitrary quantum strategy by using real numbers:

$$\begin{split} U(\theta,\phi) &= \begin{bmatrix} e^{i\phi}\cos\left(\frac{\theta}{2}\right) & \sin\left(\frac{\theta}{2}\right) \\ -\sin\left(\frac{\theta}{2}\right) & e^{-i\phi}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}, \ \theta \in [0,\pi], \ \phi \in [0,\frac{\pi}{2}] \\ U(\theta,\phi,\alpha) &= \begin{bmatrix} e^{-i\phi}\cos\left(\frac{\theta}{2}\right) & e^{i\alpha}\sin\left(\frac{\theta}{2}\right) \\ -e^{-i\alpha}\sin\left(\frac{\theta}{2}\right) & e^{i\phi}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}, \ \theta \in [0,\pi], \ \phi,\alpha \in [-\pi,\pi] \\ U(\theta,\alpha,\beta) &= \begin{bmatrix} e^{i\alpha}\cos\left(\frac{\theta}{2}\right) & ie^{i\beta}\sin\left(\frac{\theta}{2}\right) \\ ie^{-i\beta}\sin\left(\frac{\theta}{2}\right) & e^{-i\alpha}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}, \ \theta \in [0,\pi], \ \alpha,\beta \in [0,2\pi) \\ U(\theta,\phi) &= \begin{bmatrix} e^{i\phi}\cos\left(\frac{\theta}{2}\right) & ie^{i\phi}\sin\left(\frac{\theta}{2}\right) \\ ie^{-i\phi}\sin\left(\frac{\theta}{2}\right) & e^{-i\phi}\cos\left(\frac{\theta}{2}\right) \end{bmatrix}, \ \theta \in [0,\pi], \ \phi \in [0,2\pi] \end{split}$$

Quantum Prisoner's Dilemma realised on EWL

$$C = U(0, 0, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $D = U(\pi, 0, \frac{\pi}{2}) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$

$$|\psi\rangle = \frac{\sqrt{2}\left(|00\rangle + i|11\rangle\right)}{2}$$

Expected payoff function

$$\begin{split} |\psi\rangle &= J^{\dagger} \left(U_{A} \otimes U_{B} \right) Jv = \begin{bmatrix} -\sin\left(\frac{\theta_{A}}{2}\right)\sin\left(\frac{\theta_{B}}{2}\right)\sin\left(\alpha_{A}+\alpha_{B}\right) + \cos\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\cos\left(\phi_{A}+\phi_{B}\right)}{\sin\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\cos\left(\alpha_{A}+\phi_{B}\right) + \sin\left(\frac{\theta_{B}}{2}\right)\cos\left(\frac{\theta_{A}}{2}\right)\sin\left(\alpha_{B}+\phi_{A}\right)}{\sin\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\sin\left(\alpha_{A}+\phi_{B}\right) + \sin\left(\frac{\theta_{B}}{2}\right)\cos\left(\frac{\theta_{A}}{2}\right)\cos\left(\alpha_{B}+\phi_{A}\right)}{-\sin\left(\frac{\theta_{A}}{2}\right)\sin\left(\frac{\theta_{B}}{2}\right)\cos\left(\alpha_{A}+\alpha_{B}\right) + \cos\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\sin\left(\phi_{A}+\phi_{B}\right)} \end{bmatrix} \\ \begin{bmatrix} (3,3) \quad (0,5) \\ (5,0) \quad (1,1) \end{bmatrix} & \longrightarrow \begin{bmatrix} 3\left(\sin\left(\frac{\theta_{A}}{2}\right)\sin\left(\frac{\theta_{B}}{2}\right)\sin\left(\alpha_{A}+\alpha_{B}\right) - \cos\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\cos\left(\phi_{A}+\phi_{B}\right) \right)^{2} \\ & + \left(\sin\left(\frac{\theta_{A}}{2}\right)\sin\left(\frac{\theta_{B}}{2}\right)\cos\left(\alpha_{A}+\alpha_{B}\right) - \cos\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\sin\left(\phi_{A}+\phi_{B}\right) \right)^{2} \\ & + 5\left(\sin\left(\frac{\theta_{A}}{2}\right)\cos\left(\frac{\theta_{B}}{2}\right)\cos\left(\alpha_{A}+\phi_{B}\right) + \sin\left(\frac{\theta_{B}}{2}\right)\cos\left(\frac{\theta_{A}}{2}\right)\sin\left(\alpha_{B}+\phi_{A}\right) \right)^{2} \end{split}$$

EWL library – live demo 1

https://github.com/tomekzaw/ewl/blob/master/examples/example.ipynb

Best response function

$$U_{\rm A} = U(\mathbf{x}_{\rm A})$$
 and $U_{\rm B} = U(\mathbf{x}_{\rm B})$

best response_B(
$$\mathbf{x}_{A}$$
) = argmax $\$_{B}(U(\mathbf{x}_{A}), U(\mathbf{x}_{B}^{*}))$
 $\mathbf{x}_{B}^{*} \in X$

best response_A(
$$\mathbf{x}_{B}$$
) = argmax $A(U(\mathbf{x}_{A}^{*}), U(\mathbf{x}_{B}))$
 $\mathbf{x}_{A}^{*} \in X$

Nash equilibrium

In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy.

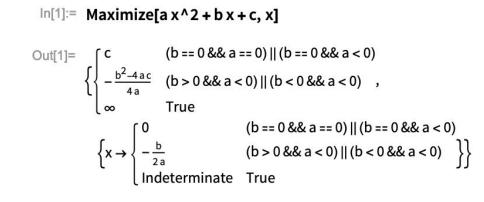
$$\mathbf{x}_{A} = best response_{A}(best response_{B}(\mathbf{x}_{A}))$$

$$\mathbf{x}_{A} = f(\mathbf{x}_{A}))$$
 where $f = (\text{best response}_{A} \circ \text{best response}_{B})$
 $\mathbf{x}_{A} - f(\mathbf{x}_{A})) = \mathbf{0}$

Algorithm

- 1. Find best response function argmax of payoff function
- 2. Find Nash equilibria fixed points of best response function

Symbolic parametric optimization



Best response function – symbolic approach

$$3\left(\sin\left(\frac{\theta_A}{2}\right)\sin\left(\frac{\theta_B}{2}\right)\sin\left(\alpha_A + \alpha_B\right) - \cos\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right)\cos\left(\phi_A + \phi_B\right)\right)^2 + \left(\sin\left(\frac{\theta_A}{2}\right)\sin\left(\frac{\theta_B}{2}\right)\cos\left(\alpha_A + \alpha_B\right) - \sin\left(\phi_A + \phi_B\right)\cos\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right)\right)^2 + 5\left(\sin\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right)\cos\left(\alpha_A + \phi_B\right) + \sin\left(\frac{\theta_B}{2}\right)\sin\left(\alpha_B + \phi_A\right)\cos\left(\frac{\theta_A}{2}\right)\right)^2 = 5$$

Best response function – symbolic approach

$$\left(\sin\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right)\cos\left(\alpha_A + \phi_B\right) + \sin\left(\frac{\theta_B}{2}\right)\sin\left(\alpha_B + \phi_A\right)\cos\left(\frac{\theta_A}{2}\right)\right)^2 = 1$$

Best response function – symbolic approach

$$\begin{bmatrix} -\sin\left(\frac{\theta_A}{2}\right)\sin\left(\frac{\theta_B}{2}\right)\sin\left(\alpha_A + \alpha_B\right) + \cos\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right)\cos\left(\phi_A + \phi_B\right)\\ \sin\left(\frac{\theta_A}{2}\right)\sin\left(\alpha_A + \phi_B\right)\cos\left(\frac{\theta_B}{2}\right) + \sin\left(\frac{\theta_B}{2}\right)\cos\left(\frac{\theta_A}{2}\right)\cos\left(\alpha_B + \phi_A\right)\\ -\sin\left(\frac{\theta_A}{2}\right)\sin\left(\frac{\theta_B}{2}\right)\cos\left(\alpha_A + \alpha_B\right) + \sin\left(\phi_A + \phi_B\right)\cos\left(\frac{\theta_A}{2}\right)\cos\left(\frac{\theta_B}{2}\right) \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Best response function – numerical approach

	method	start	bounds	success_rate	
0	Powell	zero	True	8694	
1	Powell	zero	False	9994	$\langle \square$
2	Powell	random	True	7634	
3	Powell	random	False	9923	
4	Powell	alice	True	7914	
5	Powell	alice	False	9935	
6	Nelder-Mead	zero	True	4589	
7	Nelder-Mead	zero	False	9660	
8	Nelder-Mead	random	True	4147	
9	Nelder-Mead	random	False	9952	
10	Nelder-Mead	alice	True	4355	
11	Nelder-Mead	alice	False	9901	

Nash equilibrium search – numerical approach

	player	theta_num	phi_num	alpha_num	payoff	
0	Alice	2.668878	1.629450	2.925350	NaN	
1	Bob	-0.473305	0.215931	-0.059275	4.999999	
2	Alice	-2.668066	0.059188	1.354862	5.000000	
3	Bob	5.809687	1.786669	-1.630399	5.000000	
4	Alice	2.669466	-1.507399	-0.215242	4.999995	
5	Bob	-0.472682	0.214946	-0.063987	4.999999	
6	Alice	-2.668677	0.063894	1.355847	5.000000	
7	Bob	5.810297	1.785683	-1.635118	5.000000	
8	Alice	2.670080	-1.502658	-0.214255	4.999995	
9	Bob	-0.472033	0.213973	-0.068695	4.999999	
10	Alice	-2.669315	0.068598	1.356819	5.000000	
11	Bob	5.810932	1.784706	-1.639856	5.000000	
12	Alice	2.670716	-1.497901	-0.213277	4.999995	
13	Bob	-0.471359	0.213011	-0.073419	5.000000	
14	Alice	-2.669977	0.073316	1.357781	5.000000	
15	Bob	5.811602	1.783718	-1.644761	5.000000	
16	Alice	2.671389	-1.492974	-0.212288	4.999995	
17	Bob	-0.470648	0.212038	-0.078311	5.000000	
18	Alice	-2.670675	0.078202	1.358753	5.000000	
19	Bob	5.812289	1.782752	-1.649607	5.000000	
20	Alice	2.672078	-1.488108	-0.211321	4.999995	

Best response cycle

 $\hat{B'}$

Mixed quantum strategies

$$S_A(\gamma_A) = \cos^2 \frac{\gamma_A}{2} \widehat{A} + \sin^2 \frac{\gamma_A}{2} \widehat{A}'; \ \gamma_A \in [0, \pi]$$

$$S_B(\gamma_B) = \cos^2 \frac{\gamma_B}{2} \hat{B} + \sin^2 \frac{\gamma_B}{2} \hat{B}'; \ \gamma_B \in [0, \pi]$$

$$ho = \ket{\varphi} ra{\varphi} \qquad C(
ho) = pU_1
ho U_1^{\dagger} + (1-p)U_2
ho U_2^{\dagger}$$

EWL library – live demo 2

https://github.com/tomekzaw/ewl/blob/master/examples/mixed_strategies.py

Performance tests

 $\frac{1}{\sqrt{2}}(|0...0
angle + i |1...1
angle)$

qubits count	execution time [s]
2 qubits	2,55
2 qubits	2,14
2 qubits	2,14
3 qubits	447
3 qubits	437
3 qubits	446

 $\frac{1}{2}(|0...0\rangle + \sqrt{3} |1...1\rangle)$

qubits count	execution time [s]
2 qubits	37,9
2 qubits	35
2 qubits	36,2
3 qubits	2h 57min 17s
3 qubits	3h 15min 46s
3 qubits	2h 54min 4s

 $|0...0\rangle$

qubits count	execution time [s]
2 qubits	1,21
2 qubits	1,04
2 qubits	1,12
3 qubits	10,6
3 qubits	10,8
3 qubits	10,9
4 qubits	126
4 qubits	120
4 qubits	122
5 qubits	2701 (45min 1s)
5 qubits	2692 (44min 52s)
5 qubits	2743 (45min 43s)

References

[1] Eisert, Jens, Martin Wilkens, and Maciej Lewenstein. "Quantum games and quantum strategies.", Physical Review Letters 83.15 (1999): 3077. https://doi.org/10.1103/PhysRevLett.83.3077

[2] Frąckiewicz, Piotr, and Jarosław Pykacz. "Quantum games with strategies induced by basis change rules." International Journal of Theoretical Physics 56.12 (2017): 4017-4028 https://doi.org/10.1007/s10773-017-3423-6

[3] Szopa, Marek. "Dlaczego w dylemat więźnia warto grać kwantowo?." Studia Ekonomiczne 178 (2014): 174-189.

[4] Tomasz Zawadzki and Piotr Kotara. "A Python tool for symbolic analysis of quantum games in EWL protocol with IBM Q integration." <u>https://github.com/tomekzaw/ewl/</u>