
Free software for quantum computation

Piotr Gawron

Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

KQIS AGH
13 March 2019 Kraków



Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Free software

IT Giants conference AGH 2009



Free software

A program is free software if the program’s users have the four
essential freedoms:
I The freedom to run the program as you wish, for any purpose

(freedom 0).
I The freedom to study how the program works, and change it

so it does your computing as you wish (freedom 1). Access to
the source code is a precondition for this.

I The freedom to redistribute copies so you can help others
(freedom 2).

I The freedom to distribute copies of your modified versions to
others (freedom 3). By doing this you can give the whole
community a chance to benefit from your changes. Access to
the source code is a precondition for this.

https://www.gnu.org/philosophy/free-sw.en.html

https://www.gnu.org/philosophy/free-sw.en.html


Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Quantum Open Source Foundation I

Mission
The Quantum Open Source Foundation [...] is charged to expand
the role of open source software in quantum computing and
improve the standardization and quality thereof.

The objective of QOSF is to:
I Foster collaboration between the quantum hardware and

software developer communities;
I Provide financial funding for selected projects and travel

awards for selected QOSF members and maintainers of open
source quantum projects;

I Incentivize and support the distribution of free and open
information regarding advances in quantum software
engineering and quantum computing in general;



Quantum Open Source Foundation II

I Provide a forum for physicists, software developers, quantum
hardware providers and other parties to discuss common
problems and obstacles related to open quantum software
engineering;

I Organize free and open conferences, workshops and
informational sessions on quantum software engineering;

I Convey the fundamental concepts of quantum
computing and quantum software engineering to the general
public.

www.qosf.org

www.qosf.org


In short

Do not (only) write proofs,
let’s code!



Software resources

List of Open Quantum Projects
https://www.qosf.org/project_list/

List of Quantum Computation simulators
https://www.quantiki.org/wiki/list-qc-simulators

https://www.qosf.org/project_list/
https://www.quantiki.org/wiki/list-qc-simulators


Short report from Fosdem I
Quantum computing devroom
I When open source meets quantum computing, Tomas Babej

Fingerhuth M, Babej T, Wittek P (2018) Open source
software in quantum computing. PLoS ONE 13(12):
e0208561.
https://doi.org/10.1371/journal.pone.0208561

I Forest: An Open Source Quantum Software Development Kit,
Robert Smith
Open-sourcing of quilc (compiler) and qvm (quantum
virtual machine)

I Delivering Practical Quantum Computing, Murray Thom
A review of D-Wave Annealer applications

I D-Wave’s Software Development Kit, Alexander Condello
dwave-ocean-sdk review

I D-Wave Hybrid Framework, Radomir Stevanovic
How to build complex samplers using dwave-ocean-sdk

https://doi.org/10.1371/journal.pone.0208561


Short report from Fosdem II
I What is IBMQ, Mark Mattingley-Scott
I Qutip: Quantum simulations and collaborative code

development, Shahnawaz Ahmed
A widely used quantum mechanics and computation
modelling framework written in python

I Strawberry Fields - software for photonic quantum computing,
Nathan Killoran
Quantum optics based gate model computation
framework by Xanadu

I PennyLane - Automatic differentiation and ML of QC, Josh
Izaac
Neural networks with quantum optical components

I Quantum Computing at Google and in the Cloud, Kevin D.
Kissell

I Promotion of open source and role of standardization in QC,
Panel Discussion

I Exponential speedup in progress, Mark Fingerhuth



Short report from Fosdem III
Quantum computing workshop
I Towards Practical Quantum Machine Learning with NISQAI,

Ryan LaRose
I Bayesforge: Elevating the QC Stack, Henning Dekant

Quantum/classical Bayesian networks software
distribution

I An Open-Source General Compiler for Quantum Computers,
Kaitlin Smith
A new yet unreleased quantum compiler

I Julia programming language for quantum software
development, Piotr Gawron

I QCL - A Programming Language for Quantum Computers,
Andrew Savchenko
The first programming language for quantum computers

I Curry: A probabilistic quantum programming language, Lucas
Saldyt



Short report from Fosdem IV

I PyZX: Graph-theoretic optimization of quantum circuits, John
van de Wetering
A category theory based quantum circuits optimization

I An implementation of a classifier on Qiskit, Carsten Blank
I Through the RevKit v3 implementation, Bruno Schmitt

Reversible logic synthesis tool extension for quantum
computing

I Q-bug: Visualizing Quantum Circuits, Felix Tripier
I SimulaQron — a simulator for developing quantum internet

software, Axel Dahlberg
Software stack for quantum internet developed in
Netherlands



StrawberryFields I

2

berry Fields also includes a suite of three CV quantum simu-
lator backends implemented using NumPy [54] and Tensor-
Flow [55]. Strawberry Fields comes with a built-in engine
to convert Blackbird programs to run on any of the simula-
tor backends or, when they are available, on photonic quan-
tum computers. To accompany the library, an online service
for interactive exploration and simulation of CV circuits is
available at strawberryfields.ai.

Aside from being the first quantum software frame-
work to support photonic quantum computation with
continuous-variables, Strawberry Fields provides additional
computational features not presently available in the quan-
tum software ecosystem:

1. We provide two numeric simulators; a Gaussian back-
end, and a Fock-basis backend. These two formula-
tions are unique to the CV model of quantum compu-
tation due to the use of an infinite Hilbert space, and
came with their own technical challenges.

(a) The Gaussian backend provides state-of-the-art
methods and functions for calculating the fi-
delity and Fock state probabilities, involving cal-
culations of the classically intractable hafnian
[56].

(b) The Fock backend allows operations such as
squeezing and beamsplitters to be performed
in the Fock-basis, a computationally intensive
calculation that has been highly vectorized and
benchmarked for performance.

2. We provide a suite of important circuit decomposi-
tions appearing in quantum photonics – such as the
Williamson, Bloch-Messiah, and Clements decompo-
sitions.

3. The Fock-basis backend written using the TensorFlow
machine learning library allows for symbolic calcu-
lations, automatic differentiation, and backpropaga-
tion through CV quantum simulations. As far as we
are aware, this is the first quantum simulation library
written using a high-level machine learning library,
with support for dataflow programming and auto-
matic differentiation.

The remainder of this white paper is structured as fol-
lows. Before presenting Strawberry Fields, we first provide
a brief overview of the key ingredients for CV quantum com-
putation, specifically the most important states, gates, and
measurements. We then introduce the Strawberry Fields ar-
chitecture in full, presenting the Blackbird quantum assem-
bly language, outlining how to use the library for numerical
simulation, optimization, and quantum machine learning.
Finally, we discuss the three built-in simulators and the in-
ternal representations that they employ. In the Appendices,
we give further mathematical and software details and pro-
vide full example code for a number of important CV quan-
tum computing tasks.

Quantum Computation with Continuous
Variables

Many physical systems in nature are intrinsically contin-
uous, with light being the prototypical example. Such sys-
tems reside in an infinite-dimensional Hilbert space, offer-
ing a paradigm for quantum computation which is distinct
from the discrete qubit model. This continuous-variable
model takes its name from the fact that the quantum op-
erators underlying the model have continuous spectra. It
is possible to embed qubit-based computations into the CV
picture [57], so the CV model is as powerful as its qubit
counterparts.

From Qubits to Qumodes

A high-level comparison of CV quantum computation
with the qubit model is depicted in Table I. In the remainder
of this section, we will provide a basic presentation of the
key elements of the CV model. A more detailed technical
overview can be found in Appendix A. Readers experienced
with CV quantum computing can safely skip to the next sec-
tion.

CV Qubit

Basic element Qumodes Qubits

Relevant
operators

Quadratures x̂ , p̂
Mode operators â, â†

Pauli operators
σ̂x , σ̂y , σ̂z

Common states
Coherent states |α〉
Squeezed states |z〉
Number states |n〉

Pauli eigenstates
|0/1〉 , |±〉 , |±i〉

Common gates

Rotation,
Displacement,
Squeezing,
Beamsplitter, Cubic
Phase

Phase shift,
Hadamard, CNOT,
T-Gate

Common
measurements

Homodyne |xφ〉〈xφ |,
Heterodyne 1

π |α〉〈α|,
Photon-counting |n〉〈n|

Pauli eigenstates
|0/1〉〈0/1|, |±〉〈±|,
| ± i〉〈±i|

Table I: Basic comparison of the CV and qubit settings.

The most elementary CV system is the bosonic harmonic
oscillator, defined via the canonical mode operators â and
â†. These satisfy the well-known commutation relation
[â, â†] = I. It is also common to work with the quadra-
ture operators (also called the position & momentum oper-



StrawberryFields II

3

ators)2,

x̂ :=

√√ħh
2
(â+ â†), (1)

p̂ := −i

√√ħh
2
(â− â†), (2)

where [ x̂ , p̂] = iħhÎ. We can picture a fixed harmonic oscil-
lator mode (say, within an optical fibre or a waveguide on a
photonic chip) as a single ‘wire’ in a quantum circuit. These
qumodes are the fundamental information-carrying units of
CV quantum computers. By combining multiple qumodes –
each with corresponding operators âi and â†

i – and interact-
ing them via sequences of suitable quantum gates, we can
implement a general CV quantum computation.

CV States

The dichotomy between qubit and CV systems is perhaps
most evident in the basis expansions of quantum states:

Qubit |φ〉= φ0 |0〉+φ1 |1〉 , (3)

Qumode |ψ〉=
∫

d x ψ(x) |x〉 . (4)

For qubits, we use a discrete set of coefficients; for CV sys-
tems, we can have a continuum. The states |x〉 are the eigen-
states of the x̂ quadrature, x̂ |x〉= x |x〉, with x ∈ R. These
quadrature states are special cases of a more general family
of CV states, the Gaussian states, which we now introduce.

Gaussian states

Our starting point is the vacuum state |0〉. Other states
can be created by evolving the vacuum state according to

|ψ〉= exp(−i tH) |0〉 , (5)

where H is a bosonic Hamiltonian (i.e., a function of the
operators âi and â†

i ) and t is the evolution time. States
where the Hamiltonian H is at most quadratic in the oper-
ators âi and â†

i (equivalently, in x̂ i and p̂i) are called Gaus-
sian. For a single qumode, Gaussian states are parameter-
ized by two continuous complex variables: a displacement
parameter α ∈ C and a squeezing parameter z ∈ C (of-
ten expressed as z = r exp(iφ), with r ≥ 0). Gaussian
states are so-named because we can identify each Gaussian
state with a corresponding Gaussian distribution. For single
qumodes, the identification proceeds through its displace-
ment and squeezing parameters. The displacement gives

2 It is common to picture ħh as a (dimensionless) scaling parameter for
the x̂ and p̂ operators rather than a physical constant. However, there
are several conventions for the scaling value in common use [58].
These self-adjoint operators are proportional to the Hermitian and anti-
Hermitian parts of the operator â. Strawberry Fields allows the user to
specify this value, with the default ħh= 2.

FIG. 1: Schematic representation of a Gaussian state for a
single mode. The shape and orientation are parameterized
by the displacement α and squeezing z = r exp(iφ).

the centre of the distribution, while the squeezing deter-
mines the variance and rotation of the distribution (see Fig.
1). Multimode Gaussian states, on the other hand, are pa-
rameterized by a vector of displacements r̄ and a covariance
matrix V. Many important pure states in the CV model are
special cases of the pure Gaussian states; see Table II for a
summary.

State family Displacement Squeezing

Vacuum state |0〉 α= 0 z = 0

Coherent states |α〉 α ∈ C z = 0

Squeezed states |z〉 α= 0 z ∈ C
Displaced squeezed
states |α, z〉 α ∈ C z ∈ C

x̂ eigenstates |x〉 α ∈ C,
x = 2

q
ħh
2 Re(α)

φ = 0, r →∞

p̂ eigenstates |p〉 α ∈ C,
p = 2

q
ħh
2 Im(α)

φ = π, r →∞

Fock states |n〉 N.A. N.A.

Table II: Common single-mode pure states and their relation
to the displacement and squeezing parameters. All listed
families are Gaussian, except for the Fock states. The n= 0
Fock state is also the vacuum state.

Fock states

Complementary to the continuous Gaussian states are the
discrete Fock states (or number states) |n〉, where n are non-
negative integers. These are the eigenstates of the number
operator n̂ = â†â. The Fock states form a discrete (count-
able) basis for qumode systems. Thus, each of the Gaussian
states considered in the previous section can be expanded
in the Fock-state basis. For example, coherent states have



StrawberryFields III
4

the form

|α〉= exp
�
− |α|22

� ∞∑
n=0

αn

p
n!
|n〉 , (6)

while (undisplaced) squeezed states only have even number
states in their expansion:

|z〉= 1p
cosh r

∞∑
n=0

p
(2n)!

2nn!
[−eiφ tanh(r)]n |2n〉 . (7)

Mixed states

Mixed Gaussian states are also important in the CV pic-
ture, for instance, the thermal state

ρ(n) :=
∞∑
n=0

nn

(1+ n)n+1
|n〉〈n|, (8)

which is parameterized via the mean photon number n :=
Tr(ρ(n)n̂). Starting from this state, we can consider a
mixed-state-creation process similar to Eq. (5), namely

ρ = exp(−i tH)ρ(n)exp(i tH). (9)

Analogously to pure states, by applying Hamiltonians of
second-order (or lower) to thermal states, we generate the
family of Gaussian mixed states.

CV Gates

Unitary operations can be associated with a generating
Hamiltonian H via the recipe (cf. Eqs. (5) & (9))

U := exp (−i tH). (10)

For convenience, we classify unitaries by the degree of their
generator. A CV quantum computer is said to be universal
if it can implement, to arbitrary precision and with a finite
number of steps, any unitary which is polynomial in the
mode operators [48]. We can build a multimode unitary by
applying a sequence of gates from a universal gate set, each
of which acts only on one or two modes. We focus on a
universal set made from the following two subsets:

Gaussian gates: Single and two-mode gates which are at
most quadratic in the mode operators, e.g., Displace-
ment, Rotation, Squeezing, and Beamsplitter gates.

Non-Gaussian gate: A single-mode gate which is degree 3
or higher, e.g., the Cubic phase gate.

A number of fundamental CV gates are presented in Ta-
ble III. Many of the Gaussian states from the previous sec-
tion are connected to a corresponding Gaussian gate. Any
multimode Gaussian gate can be implemented through a
suitable combination of Displacement, Rotation, Squeezing,
and Beamsplitter Gates [50], making these gates sufficient
for constructing all quadratic unitaries. The cubic phase
gate is presented as an exemplary non-Gaussian gate, but
any other non-Gaussian gate could also be used to achieve

universality. A number of other useful CV gates are listed in
Appendix B.

Gate Unitary Symbol

Displacement Di(α) = exp (αâ†
i −α∗ âi) D

Rotation Ri(φ) = exp (iφn̂i) R

Squeezing Si(z) = exp ( 1
2 (z

∗ â2
i − zâ†2

i )) S

Beamsplitter
BSi j(θ ,φ) =
exp (θ (eiφ âi â

†
j − e−iφ â†

i â j))
BS

Cubic phase Vi(γ) = exp
�
i γ3ħh x̂3

i

�
V

Table III: Some important CV model gates. All listed gates
except the cubic phase gate are Gaussian.

CV Measurements

As with CV states and gates, we can distinguish between
Gaussian and non-Gaussian measurements. The Gaus-
sian class consists of two (continuous) types: homodyne
and heterodyne measurements, while the key non-Gaussian
measurement is photon counting. These are summarized in
Table IV.

Homodyne measurements

Ideal homodyne detection is a projective measurement
onto the eigenstates of the quadrature operator x̂ . These
states form a continuum, so homodyne measurements are
inherently continuous, returning values x ∈ R. More gen-
erally, we can consider projective measurement onto the
eigenstates

��xφ
�

of the Hermitian operator

x̂φ := cosφ x̂ + sinφ p̂. (11)

This is equivalent to rotating the state clockwise by φ and
performing an x̂-homodyne measurement. If we have a
multimode Gaussian state and we perform homodyne mea-
surement on one of the modes, the conditional state of the
unmeasured modes remains Gaussian.

Heterodyne measurements

Whereas homodyne detection is a measurement of x̂ ,
heterodyne detection can be seen as a simultaneous mea-
surement of both x̂ and p̂. Because these operators do not
commute, they cannot be simultaneously measured without
some degree of uncertainty. Equivalently, we can picture
heterodyne measurement as projection onto the coherent
states, with measurement operators 1

π |α〉〈α|. Because the
coherent states are not orthogonal, there is a corresponding
lack of sharpness in the measurements. If we perform het-
erodyne measurement on one mode of a multimode state,
the conditional state on the remaining modes stays Gaus-
sian.

Source: arXiv:1804.03159



PennyLane 5

theoretical foundation for derivative computations in Pen-
nyLane. In a nutshell, PennyLane makes two circuit evalu-
ations, taking place at shifted parameters, in order to com-
pute analytic derivatives. This recipe works for qubit gates
of the form e−iµP , where the Hermitian generator P has
only two unique eigenvalues (which includes e.g., all single-
qubit rotation gates), as well as continuous-variable circuits
with Gaussian operations7.

If f (x;θ ) = f (µ) is the output of the quantum node, we
have

∂µ f (µ) = c
�

f (µ+ s)− f (µ− s)
�
, (3)

where c, s ∈ R are fixed parameters for each type of gate.
While this equation bears some structural resemblance to
numerical formulas (discussed next), there are two key dif-
ferences. First, the numbers c and s are not infinitesimal,
but finite; second, Eq. (3) gives the exact derivatives. Thus,
while analytic derivative evaluations are constrained by de-
vice noise and statistical imprecision in the averaging of
measurements, they are not subject to numerical issues. To
analytically compute derivatives of qubit gates or gates in
a Gaussian circuit, PennyLane automatically looks up the
appropriate derivative recipe (the numbers c and s) for a
gate, evaluates the original circuit twice (shifting the argu-
ment of the relevant gate by ±s), subtracts the results, and
scales by c.

Numerical derivatives

Numerical derivative methods require only ‘black-box’
evaluations of the model. We estimate the partial deriva-
tive of a node by evaluating its output, f (x;θ ) = f (µ), at
several values which are close to the current value µ ∈ θ (µ
can be either a variable or an input here). The approxima-
tion of the derivative is given by

∂µ f (µ)≈ f (µ+∆µ)− f (µ)
∆µ

(4)

for the forward finite-differences method, and by

∂µ f (µ)≈ f (µ+ 1
2∆µ)− f (µ− 1

2∆µ)

∆µ
(5)

for the centered finite-differences method. Of course, there
is a tradeoff in choice of the difference ∆µ for noisy hard-
ware.

User API

A thorough introduction and review of PennyLane’s API
can be found in the online documentation. The documen-

7 For cases that do not fall into the above two categories, using an ancilla
may provide an alternate strategy to evaluate derivatives [42]. This
option is not currently implemented in PennyLane.

FIG. 6: Variational circuit of the qubit rotation example.

tation also provides several examples for optimization and
machine learning of quantum and hybrid models in both
continuous-variable and qubit architectures, as well as tu-
torials that walk through the features step-by-step.

Optimization

To see how PennyLane allows the easy construction and
optimization of variational circuits, let us consider the
simple task of optimizing the rotation of a single qubit —
the PennyLane version of ‘Hello world!’.

The task at hand is to optimize the variational circuit of
Fig. 6 with two rotation gates in order to flip a single qubit
from state |0〉 to state |1〉. After the rotations, the qubit is
in state |ψ〉= R y(φ2)Rx(φ1)|0〉 and we measure the expec-
tation value

f (φ1,φ2) = 〈ψ|σz |ψ〉= cos(φ1) cos(φ2)

of the Pauli-Z operator. Depending on the variables φ1 and
φ2, the output expectation lies between 1 (if |ψ〉 = |0〉)
and −1 (if |ψ〉= |1〉).

PennyLane code for this example — using the default au-
tograd interface for classical processing — is shown below
in Codeblock 1. It is a self-contained example that defines a
quantum node, binds it to a computational device, and op-
timizes the output of the quantum node to reach a desired
target.
Internal Server Error

1 import pennylane as qml
2 from pennylane.optimize import

GradientDescentOptimizer,→
3

4 # Create device
5 dev = qml.device('default.qubit',

wires=1),→
6

7 # Quantum node
8 @qml.qnode(dev)
9 def circuit1(var):

10 qml.RX(var[0], wires=0)
11 qml.RY(var[1], wires=0)
12 return qml.expval.PauliZ(0)
13

14 # Create optimizer
15 opt = GradientDescentOptimizer(0.25)
16

17 # Optimize circuit output
18 var = [0.1, 0.2]
19 for it in range(30):
20 var = opt.step(circuit1, var)

import pennylane as qml
from pennylane.optimize import GradientDescentOptimizer
# Create device
dev = qml.device('default.qubit', wires=1)
# Quantum node
@qml.qnode(dev)
def circuit1(var):

qml.RX(var[0], wires=0)
qml.RY(var[1], wires=0)
return qml.expval.PauliZ(0)

# Create optimizer
opt = GradientDescentOptimizer(0.25)
# Optimize circuit output
var = [0.1, 0.2]
for it in range(30):

var = opt.step(circuit1, var)
print("Step {}: cost: {}".format(it, circuit1(var)))

Source: arXiv:1811.04968



Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Julia

I Julia is a modern programming language focused on
numerical computing.

I Julia is an imperative, structural, dynamical, just-in-time
compiled programming language supporting multiple
dispatch.

I Julia is equipped with a simple yet powerful type system
consisting of abstract and concrete, potentially
parametrised, types.

I Julia supports meta programming trough macros which
allow for creation of domain specific languages.

I Julia natively supports concurrent, parallel and distributed
computing models.



Julia and quantum computing

Julia vs. Python as a language for QC

I Julia solves two languages problem that exists with
application of Python in numeric applications.

I Julia allows for elegant notation that closely resembles
mathematical notation.

I Julia can be used as a full-stack numerical computation
language able to handle and process petabytes of data
therefore it is suitable to become the core element of
quantum computation infrastructure.



Quantum landscape in Julia
Numerics
I QuantumOptics.jl — focused on quantum optics and open

quantum systems.
I JuliaQuantum — ambitious, extensive but dead.

Quantum computation

I Yao.jl — A DSL for quantum computation.
I QuAlgorithmZoo.jl — implementation of a couple of quantum

algorithms in Yao.jl

Raytheon BBN Technologies - Quantum Group
Has full stack for running their superconducting quantum system.
I QuantumInfo.jl, RandomQuantum.jl — strong overlap with

our library.
I SchattenNorms.jl, Cliffords.jl, QSimulator.jl, . . . .



QuantumInformation.jl—goals

Goals
I Provide a simple numerical library for performing calculations

in quantum information theory.
I Focus on mixed states and quantum channels.
I Provide fast and tested (!) generation methods of random

quantum objects.
I Provide a wide selection of functionals (distances,

entanglement measures, norms).

Gawron P, Kurzyk D, Pawela Ł (2018) QuantumInformation.jl—A Julia
package for numerical computation in quantum information theory. PLoS
ONE 13(12): e0209358.
https://doi.org/10.1371/journal.pone.0209358

https://doi.org/10.1371/journal.pone.0209358


QuantumInformation.jl—overview I

Listing 1: Quantum pure states are represented as 1d arrays. The inner
product is expressed naturally.

julia> ψ=(1/sqrt(2)) * (ket(1,2) + ket(2,2))
2-element Array{Complex{Float64},1}:
0.7071067811865475 + 0.0im
0.7071067811865475 + 0.0im

julia> φ=(1/2) * ket(1,2) + (sqrt(3)/2) * ket(2,2)
2-element Array{Complex{Float64},1}:
0.5 + 0.0im
0.8660254037844386 + 0.0im

julia> φ' ∗ ψ
0.9659258262890682 + 0.0im

julia> sqrt(φ' * φ)
0.9999999999999999 + 0.0im



QuantumInformation.jl—overview II

Listing 2: Density matrices are 2d arrays.
julia> ρ = [0.25 0.25im; -0.25im 0.75]
2×2 Array{Complex{Float64},2}:
0.25+0.0im 0.0+0.25im

-0.0-0.25im 0.75+0.0im

julia> σ = [0.4 0.1im; -0.1im 0.6]
2×2 Array{Complex{Float64},2}:
0.4+0.0im 0.0+0.1im

-0.0-0.1im 0.6+0.0im

julia> ptrace(ρ ⊗ σ, [2, 2], [2])
2×2 Array{Complex{Float64},2}:
0.25+0.0im 0.0+0.25im
0.0-0.25im 0.75+0.0im



QuantumInformation.jl—overview III
Listing 3: Quantum Channels are in four representations, each having its
own type.

julia> γ=0.4
0.4

julia> K0 = Matrix([1 0; 0 sqrt(1-γ)])
2×2 Array{Float64,2}:
1.0 0.0
0.0 0.774597

julia> K1 = Matrix([0 sqrt(γ); 0 0])
2×2 Array{Float64,2}:
0.0 0.632456
0.0 0.0

julia> Φ = KrausOperators([K0,K1])
KrausOperators{Array{Float64,2}}
dimensions: (2, 2)
[1.0 0.0; 0.0 0.774597]
[0.0 0.632456; 0.0 0.0]

julia> iscptp(Φ)
true



QuantumInformation.jl—overview IV

Listing 4: Convertions between chanels representations are implemented.
julia> Ψ1 = convert(SuperOperator{Matrix{ComplexF64}}, Φ)
SuperOperator{Array{Complex{Float64},2}}
dimensions: (2, 2)
Complex{Float64}
[1.0+0.0im 0.0+0.0im 0.0+0.0im 0.4+0.0im;
0.0+0.0im 0.774597+0.0im 0.0+0.0im 0.0+0.0im;
0.0+0.0im 0.0+0.0im 0.774597+0.0im 0.0+0.0im;
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.6+0.0im]

julia> Ψ2 = convert(DynamicalMatrix{Matrix{Float64}}, Φ)
DynamicalMatrix{Array{Float64,2}}
dimensions: (2, 2)
[1.0 0.0 0.0 0.774597;
0.0 0.4 0.0 0.0;
0.0 0.0 0.0 0.0;
0.774597 0.00.0 0.6]

julia> Ψ3 = convert(Stinespring{Matrix{Float64}}, Φ)
Stinespring{Array{Float64,2}}
dimensions: (2, 2)
[...]



QuantumInformation.jl—overview V

Listing 5: Channels can be composed in parallel and in series. Application
of channels is done naturally.

julia> ρ2=φ * φ'
2×2 Array{Complex{Float64},2}:
0.25+0.0im 0.433013+0.0im
0.433013+0.0im 0.75+0.0im

julia> (Φ ⊗ Φ)(ρ1 ⊗ ρ2)
4×4 Array{Complex{Float64},2}:
0.385+0.0im 0.234787+0.0im 0.213014+0.0im 0.129904+0.0im
0.234787+0.0im 0.315+0.0im 0.129904+0.0im 0.174284+0.0im
0.213014+0.0im 0.129904+0.0im 0.165+0.0im 0.100623+0.0im
0.129904+0.0im 0.174284+0.0im 0.100623+0.0im 0.135+0.0im

julia> (Ψ1 ◦ Ψ2)(ρ1)
2×2 Transpose{Complex{Float64},Array{Complex{Float64},2}}:
0.82+0.0im 0.3+0.0im
0.3+0.0im 0.18+0.0im



QuantumInformation.jl—overview VI

Listing 6: A sub-package for random matrices is implmented. Random
Hermitian matrices.

julia> g = GinibreEnsemble{2}(2,3)
GinibreEnsemble{2}(m=2, n=3)

julia> rand(g)
2×3 Array{Complex{Float64},2}:
0.835803+1.10758im -0.622744-0.130165im -0.677944+0.636562im
1.32826+0.106582im -0.460737-0.531975im -0.656758+0.0244259im



QuantumInformation.jl—overview VII

Listing 7: Random unitaries.
julia> c = CircularEnsemble{2}(3)
CircularEnsemble{2}(
d: 3
g: GinibreEnsemble{2}(m=3, n=3)
)

julia> u = rand(c)
3×3 Array{Complex{Float64},2}:
0.339685+0.550434im -0.392266-0.3216im -0.53172+0.203988im
0.515118-0.422262im 0.392165-0.626859im -0.0504431-0.084009im
0.297203+0.222832im -0.418737-0.143578im 0.607012-0.545525im

julia> u*u'
3×3 Array{Complex{Float64},2}:
1.0+0.0im -5.55112e-17-5.55112e-17im -2.77556e-17-4.16334e-17im

-5.55112e-17+5.55112e-17im 1.0+0.0im -2.498e-16+0.0im
-2.77556e-17+4.16334e-17im -2.498e-16+0.0im 1.0+0.0im



QuantumInformation.jl—overview VIII

Listing 8: Random quantum pure sates.
julia> h = HaarKet{2}(3)
HaarKet{2}(d=3)

julia> ψ = rand(h)
3-element Array{Complex{Float64},1}:
0.1687649644765863 - 0.3201009507269653im
0.7187423269572294 - 0.39405022770434767im
0.1342475675218075 + 0.42327915636096036im

julia> norm(ψ)
1.0



QuantumInformation.jl—overview IX
Listing 9: Random quantum channels are returned in appropriate channel
type.

julia> c = ChoiJamiolkowskiMatrices(2, 3)
ChoiJamiolkowskiMatrices{2,1}(WishartEnsemble{2,1}(d=6), 2, 3)

julia> Φ = rand(c)
DynamicalMatrix{Array{Complex{Float64},2}}
dimensions: (2, 3)
Complex{Float64}
[0.307971-4.98733e-18im -0.00411588+0.0368471im. . .

-0.0676732+0.024328im 0.0860858+0.00302876im;
-0.00411588-0.0368471im 0.167651+2.1684e-19im. . .
-0.0428561+0.0266119im 0.0191888+0.0101013im;
. . . ;
-0.0676732-0.024328im -0.0428561-0.0266119im. . .
0.210419+0.0im -0.103401-0.142753im;
0.0860858-0.00302876im 0.0191888-0.0101013im. . .

-0.103401+0.142753im 0.411068+0.0im]

julia> ptrace(Φ.matrix, [3, 2],[1])
2×2 Array{Complex{Float64},2}:
1.0-1.53957e-17im -1.38778e-17-3.05311e-16im
1.38778e-17+3.05311e-16im 1.0+2.1684e-19im



Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Adiabatic model of quantum computation – the basics I

Classical Ising model
Let a classical Hamiltonian (energy function) be given:

H(s) = −
∑
i∈I

hi si −
∑

(i ,j)∈I×I

Jijsi sj ,

Where
s = [si ]i∈I ∈ {−1, 1}I , hi ∈ R, Jij ∈ R.

The goal is to find
s? = arg min

s
H(s),

the minimal energy state.



Adiabatic model of quantum computation – the basics II

Quantum Ising Hamiltonian

H(t) = (1− t

τ
)

(
−
∑
i∈I

σ
(i)
x

)
︸ ︷︷ ︸

H0

+
t

τ

−∑
i∈I

hiσ
(i)
z −

∑
(i ,j)∈I×I

Jijσ
(i)
z σ

(j)
z


︸ ︷︷ ︸

Hp

,

where
σ

(i)
{x ,z} = 1⊗(i−1)

2 ⊗ σ{x ,z} ⊗ 1⊗(|I|−i−1)
2

12 =

(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
.



Adiabatic model of quantum computation – the basics III

Eigenstates of a Hamiltonian
Hamiltonians have eigenvalues En (E0 ≤ E1 ≤ . . . ≤ En) and
corresponding eigenstates |ψ〉n:

H |ψ〉n = En |ψ〉n .

If we will begin computation in the state

∣∣∣ψ(0)
〉

0
: H0

∣∣∣ψ(0)
〉

0
= E

(0)
0

∣∣∣ψ(0)
〉

0
=

(
1√
2

(|0〉 − |1〉)
)⊗|I|

,

then for large τ we will end up in the state:∣∣∣ψ(p)
〉

0
: Hp

∣∣∣ψ(p)
〉

0
= E

(p)
0

∣∣∣ψ(p)
〉

0
.



Adiabatic model of quantum computation – the basics IV

Finally we perform a measurement:{
P
⊗|I|
±1

}
,

where
{P−1 = |0〉〈0| ,P1 = |1〉〈1|}.

As a result we obtain:
s = {±1}|I|,

what is the result of our minimization problem.



Adiabatic evolution – example

0.0 0.2 0.4 0.6 0.8 1.0
t/

1.2

1.0

0.8

0.6

0.4

0.2

Ei
ge

ne
ne

rg
ie

s

Energyspectrum (20 lowest values) of 8 spins.
 = 1000.

 The occupation probabilities are encoded in the red line widths.

0.0 0.2 0.4 0.6 0.8 1.0
t/

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
tio

n 
pr

ob
ab

ilit
y

Occupation probability of the 20 lowest eigenstates for 8 spins

Ground state



Adiabatic evolution – example

0.0 0.2 0.4 0.6 0.8 1.0
t/

1.2

1.0

0.8

0.6

0.4

0.2

Ei
ge

ne
ne

rg
ie

s

Energyspectrum (20 lowest values) of 8 spins.
 = 100.

 The occupation probabilities are encoded in the red line widths.

0.0 0.2 0.4 0.6 0.8 1.0
t/

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
tio

n 
pr

ob
ab

ilit
y

Occupation probability of the 20 lowest eigenstates for 8 spins

Ground state



Adiabatic evolution – example

0.0 0.2 0.4 0.6 0.8 1.0
t/

1.2

1.0

0.8

0.6

0.4

0.2

Ei
ge

ne
ne

rg
ie

s

Energyspectrum (20 lowest values) of 8 spins.
 = 10.

 The occupation probabilities are encoded in the red line widths.

0.0 0.2 0.4 0.6 0.8 1.0
t/

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
tio

n 
pr

ob
ab

ilit
y

Occupation probability of the 20 lowest eigenstates for 8 spins
Ground state



Adiabatic evolution – example

0.0 0.2 0.4 0.6 0.8 1.0
t/

1.2

1.0

0.8

0.6

0.4

0.2

Ei
ge

ne
ne

rg
ie

s

Energyspectrum (20 lowest values) of 8 spins.
 = 1.

 The occupation probabilities are encoded in the red line widths.

0.0 0.2 0.4 0.6 0.8 1.0
t/

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
tio

n 
pr

ob
ab

ilit
y

Occupation probability of the 20 lowest eigenstates for 8 spins
Ground state



D-Wave annealer
a b

0 1/4 1/2 3/4 1
0

15

30

45

t/τ

F
re

q
u
en

cy
[G

H
z]

g

∆

Chimera 4× 4× 8

Figure: H(t)/(2π~) = −g(t)
∑

i σ
(i)
x −∆(t)H1, t ∈ [0, τ ].

Source: Bartłomiej Gardas



Source: Copyright © D-Wave Systems Inc.



Example of dimod application

Program:
import dimod
from dwave.system.samplers import DWaveSampler

J = {("a", "b"): -1.0, ("a", "c"): -0.5, ("c", "a"): 0.1}
h = {"a": 0, "b": -1, "c":0.5}

bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
sampler = dimod.ExactSolver() # or DWaveSampler()
response = sampler.sample(bqm)
for datum in response.data(['sample', 'energy']):

print(datum.sample, datum.energy)

Output:
{'a': 1, 'b': 1, 'c': -1} -2.1
{'a': 1, 'b': 1, 'c': 1} -1.9
{'a': -1, 'b': -1, 'c': -1} -0.9
{'a': -1, 'b': 1, 'c': -1} -0.9
{'a': -1, 'b': 1, 'c': 1} 0.9
{'a': -1, 'b': -1, 'c': 1} 0.9
{'a': 1, 'b': -1, 'c': -1} 1.9
{'a': 1, 'b': -1, 'c': 1} 2.1



Outline

Introduction—Free software

Free software actions for quantum computation
Quantum Open Source Foundation
Fosdem 19 Quantum computing track
Xanadu.ai

Julia and quantum computing
Introduction to Julia
QuantumInformation.jl

Programming D-Wave Annealer
Quantum annealing
D-Wave annealer
D-Wave software stack

Future work—interesting challenges
Interesting goals to pursue



Interesting goals to pursue I

QuantumInformation.jl

I Quantum channel composition using tensor networks (help
needed!).

I Managing the rank of quantum channels in order to
speed-up computation.

I Adding support for sparse arrays (moderate difficulty).
I Clean-up and enhancements.



Interesting goals to pursue II

AcausalNets.jl

I Finishing, polishing and publishing
https://github.com/mikegpl/AcausalNets.jl

I Possible cooperation with http://artiste-qb.net/
https://github.com/artiste-qb-net

https://github.com/mikegpl/AcausalNets.jl
http://artiste-qb.net/
https://github.com/artiste-qb-net


Interesting goals to pursue III

Ising samplers Julia stack

I Existing project ThreeQ.jl:
https://github.com/omalled/ThreeQ.jl.

I Maybe a new project with well developed type system is more
suitable (moderate difficulty — MSc level).

https://github.com/omalled/ThreeQ.jl


Interesting goals to pursue IV

Assessment of existing gate model for quantum computation
Julia stack
I QuantumBFS/Yao.jl

https://github.com/QuantumBFS/Yao.jl.
I Quantum Bayesian networks to Yao.jl compiler (difficult —

PhD level project).
I Quantum Gate Language compiler

https://github.com/BBN-Q/QGL.jl.
I Quantum gate model compiler for dedicated architectures

(difficult — PhD level project).

https://github.com/QuantumBFS/Yao.jl
https://github.com/BBN-Q/QGL.jl


Interesting goals to pursue V

A general gate model compiler

I Based on quilc https://github.com/rigetti/quilc (very
difficult).

https://github.com/rigetti/quilc


Interesting goals to pursue VI

Quantum Computation Language to QASM / QUIL compiler

I Based on qcl2qml https://github.com/ZKSI/qcl2qml
(easy).

https://github.com/ZKSI/qcl2qml


Interesting goals to pursue VII

A general question

I How to integrate quantum computation with
super-computing infrastructure for big data processing?

!!!



Thank you for your attention!

Questions?

Websites, e-mail
www.quantiki.org
github.com/ZKSI/QuantumInformation.jl
p.w.gawron@gmail.com

www.quantiki.org
github.com/ZKSI/QuantumInformation.jl

	Introduction—Free software
	Free software actions for quantum computation
	Quantum Open Source Foundation
	Fosdem 19 Quantum computing track
	Xanadu.ai

	Julia and quantum computing
	Introduction to Julia
	QuantumInformation.jl

	Programming D-Wave Annealer
	Quantum annealing
	D-Wave annealer
	D-Wave software stack

	Future work—interesting challenges
	Interesting goals to pursue


