

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

Tensor Networks approach to simulating Continuous-Time Stochastic Automata Networks

mgr inż. Bartłomiej Grochal dr inż. Katarzyna Rycerz, dr hab. inż. Piotr Gawron (IITiS PAN)

Kraków Quantum Computation and Information Seminar AGH University of Science and Technology, Kraków

Kraków, 04.12.2018

Agenda

- Motivation
- Introduction to Stochastic Automata Networks 2
- Introduction to Tensor Networks 3
- TNSAN algorithm 4
- Implementation and evaluation 5
- Conclusions and future work 6

∍

< □

Agenda

Motivation

- Probabilistic models in Operations Research and Performance Evaluation are mostly focused around Markovian ones.
- Simulation capabilities (considering both memory and time) are limited due to the ubiquitous state space explosion problem.
- The Stochastic Automata Networks formalism utilizes a hierarchical representation of distributed systems in order to overcome the aforementioned limitations, however there is still no efficient numerical algorithm proposed for a notable class of models.
- On the other hand, the Tensor Networks formalism proved to be helpful in dealing with complex, many-body quantum systems struggling with the curse of dimensionality problem.

AGH

A G H

Definition

The stochastic process is given by a set $\{\chi_t : t \in \mathbb{R}^{0^+}\}$ of random variables, each of which taking values from a set $\mathscr{S} = \{s^{(1)}, s^{(2)}, \ldots, s^{(N)}\}$ called the state space.

Remark

A stochastic process is said to be *Markovian* when it satisfies the *memorylessness property* stating that the future state of the process depends upon the present state only and not on the sequence of preceding events.

Table: The family of Markov models.

€

< D >

Definition

Consider a stochastic process $\mathscr{X} = \left\{ \chi_t : t \in \mathbb{R}^{0^+} \right\}$ over a state space \mathscr{S} . Then, for any value $k \in \mathbb{N}$, strictly increasing times indexed up to these values $t_0 < t_1 < t_2 < \ldots \in \mathbb{R}^{0^+}$ and all states indexed at these times $s_0, s_1, s_2, \ldots \in \mathscr{S}$, the stochastic process \mathscr{X} constitutes the *Continuous-Time Markov Chain* if it satisfies the following *Markov property*:

$$\Pr\left(\chi_{t_{k+1}} = s_{k+1} \mid \chi_{t_k} = s_k, \chi_{t_{k-1}} = s_{k-1}, \dots, \chi_{t_0} = s_0\right) = \Pr\left(\chi_{t_{k+1}} = s_{k+1} \mid \chi_{t_k} = s_k\right),$$

where: $\Pr(\cdot \mid \cdot)$ denotes the conditional probability.

Definition

A CTMC $\mathscr{X} = \left\{ \chi_t : t \in \mathbb{R}^{0^+} \right\}$ over a state space \mathscr{S} is said to be *time-homogeneous* if its conditional transition probability is invariant with respect to time, i.e.:

$$\Pr\left(\chi_t = \boldsymbol{s} \mid \chi_{t'} = \boldsymbol{s}'\right) = \Pr\left(\chi_{t-t'} = \boldsymbol{s} \mid \chi_0 = \boldsymbol{s}'\right),$$

where: $t' \leq t \in \mathbb{R}^{0+}$ and $s, s' \in \mathscr{S}$.

Remark

The aforementioned transition probabilities form a probability matrix $P(t)_{N \times N}$ describing evolution of a CTMC, such that:

$$p_{ij}(t) = \Pr\left(\chi_t = s^{(j)} \mid \chi_0 = s^{(i)}\right).$$

₩ AGH

Theorem

The probability matrix P(t) satisfies both the Kolmogorov forward equation:

$$\frac{d}{dt}P(t)=P(t)Q,$$

and the Kolmogorov backward equation:

$$\frac{d}{dt}P(t)=QP(t),$$

for a transition rate matrix $Q_{N \times N}$ with elements:

$$q_{ij} = \lim_{\Delta t o 0} rac{p_{ij}(\Delta t) - p_{ij}(0)}{\Delta t} \quad ext{for } j
eq i, \quad q_{ii} = -\sum_{j
eq i} q_{ij}.$$

Theorem

Taking an initial condition $P(0) = I_N$, the unique solution of Kolmogorov equations is given by:

 $P(t) = \exp(tQ).$

Remark

Let $\mathbf{p}(t)$ be a probability distribution of states belonging to a time-homogeneous CTMC \mathscr{X} over time. Assuming $\mathbf{p}(0)$ is the initial probability distribution, the probability distribution of states of \mathscr{X} at any instant of time t is given by:

$$\mathbf{p}(t)=\mathbf{p}(0)P(t).$$

Definition

The Continuous-Time Stochastic Automaton A is a triple:

•
$$\mathscr{S}_{\mathcal{A}} = \left\{ s^{(i)} \right\}$$
 of size $S_{\mathcal{A}}$,

•
$$\mathscr{L}_{\mathcal{A}} = \left\{ \left(e, p_{s^{(i)}}^{e} \right) \right\}$$
 of size $L_{\mathcal{A}}$,

•
$$f_{\mathcal{A}}: \mathscr{S}^2_{\mathcal{A}} \to \mathscr{L}_{\mathcal{A}}.$$

Definition

The (Continuous-Time) Stochastic Automata Network \mathcal{N} is a tuple:

•
$$\mathscr{A}_{\mathcal{N}} = \{\mathcal{A}^{(i)}\}$$
 of size $N_{\mathcal{N}}$

•
$$\mathscr{E}_{\mathcal{N}} = \{e^{(i)}\}$$
 of size $E_{\mathcal{N}}$.

Definition

Each event $e \in \mathscr{E}_{\mathcal{N}}$ is given by a triple:

• $t_{\mathcal{N}}(e)$ for $t_{\mathcal{N}}: \mathscr{E}_{\mathcal{N}} \to \{loc, syn\},\$

•
$$m_{\mathcal{N}}(e)$$
 for $m_{\mathcal{N}}:\mathscr{E}_{\mathcal{N}} o\mathscr{A}_{\mathcal{N}},$

•
$$q_{\mathcal{N}}(e)$$
 for $q_{\mathcal{N}}:\mathscr{E}_{\mathcal{N}} o\mathbb{R}^{0^+}$

∍

< D >

Figure: Graph representation of a stochastic automaton.

Event	$e^{(1)}$	e ⁽²⁾	e ⁽³⁾	e ⁽⁴⁾	e ⁽⁵⁾
Rate	λ_1	λ_2	λ_3	λ_4	λ_5

Table: Transition rates of events associated with the automaton above.

< D

AGH

∍

Figure: Graph representation of a stochastic automaton.

$$Q_{\mathcal{A}} = egin{bmatrix} -\lambda_1 & \lambda_1 & 0 & 0 \ \lambda_5 & -(\lambda_2+\lambda_5) & \lambda_2 & 0 \ 0 & 0 & -\lambda_3 & \lambda_3 \ 0.4\cdot\lambda_4 & 0.6\cdot\lambda_4 & 0 & -\lambda_4 \end{bmatrix}$$

AGH

Definition

Let $A_{m \times n} = [a_{ij}]$ and $B_{p \times q} = [b_{ij}]$. The Kronecker (also called *tensor*) product is the block matrix $(A \otimes B)_{mp \times nq}$, such that:

 $A \otimes B \stackrel{\text{def}}{=} \begin{bmatrix} a_{11}b_{11} & \dots & a_{11}b_{1q} & \dots & \dots & a_{1n}b_{11} & \dots & a_{1n}b_{1q} \\ \vdots & \ddots & \vdots & \dots & \ddots & \vdots & \ddots & \vdots \\ a_{11}b_{p1} & \dots & a_{11}b_{pq} & \dots & \dots & a_{1n}b_{p1} & \dots & a_{1n}b_{pq} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} & \dots & a_{m1}b_{1q} & \dots & \dots & a_{mn}b_{11} & \dots & a_{mn}b_{1q} \\ \vdots & \ddots & \vdots & \dots & \dots & a_{mn}b_{11} & \dots & a_{mn}b_{1q} \\ a_{m1}b_{p1} & \dots & a_{m1}b_{pq} & \dots & \dots & a_{mn}b_{p1} & \dots & a_{mn}b_{pq} \end{bmatrix}.$

Definition

Let $A_{n \times n}$ and $B_{m \times m}$. The Kronecker (also called *tensor*) sum is the matrix $(A \oplus B)_{mn \times mn}$ such that:

$$A \oplus B \stackrel{\mathsf{def}}{=} A \otimes I_m + I_n \otimes B.$$

Remark

The generalized operations:

$$\bigotimes_{k=1}^{N} A^{(k)} = A^{(1)} \otimes A^{(2)} \otimes \ldots \otimes A^{(N)} \quad \text{and} \quad \bigoplus_{k=1}^{N} B^{(k)} = B^{(1)} \oplus B^{(2)} \oplus \ldots \oplus B^{(N)}$$

are well defined for any rectangular matrices $A^{(1)}, A^{(2)}, \ldots, A^{(N)}$ and any square matrices $B^{(1)}, B^{(2)}, \ldots, B^{(N)}$.

AG H

Theorem

The global infinitesimal generator matrix Q_N of a Stochastic Automata Network \mathcal{N} may be written in terms of $N_N + 2 \cdot E_N$ tensor products by separating local and synchronized transitions as follows:

$$Q_{\mathcal{N}} = \bigoplus_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{loc} + \sum_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}} + \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}} \right]$$

Figure: Graph representation of a stochastic automaton.

$$Q_{\mathcal{A}}^{\textit{loc}} = egin{bmatrix} -\lambda_1 & \lambda_1 & 0 & 0 \ \lambda_5 & -\lambda_5 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0.4 \cdot \lambda_4 & 0.6 \cdot \lambda_4 & 0 & -\lambda_4 \end{bmatrix}$$

AGH

Figure: Graph representation of a stochastic automaton.

AGH

€

< D >

Figure: Graph representation of a stochastic automaton.

AGH

э

< D >

5990

Tensors

AGH

Definition

The rank-d tensor $T_{\alpha^{(1)},\alpha^{(2)},\ldots,\alpha^{(d)}}$ of indices $\alpha^{(1)},\alpha^{(2)},\ldots,\alpha^{(d)}$, each of which of size $|\alpha^{(i)}|$, $1 \leq i \leq d$, is an element of the $\mathbb{R}^{|\alpha^{(1)}| \cdot |\alpha^{(2)}| \cdot ... \cdot |\alpha^{(d)}|}$ space.

Remark

An element of the tensor $T_{lpha^{(1)},lpha^{(2)},\ldots,lpha^{(d)}}$ is given by T_{i_1,i_2,\ldots,i_d} for $1 \leq i_1 \leq i_1$ $|\alpha^{(1)}|, 1 \le i_2 \le |\alpha^{(2)}|, \dots, 1 \le i_d \le |\alpha^{(d)}|.$

Bartłomiej Grochal (AGH)

21 / 45

Tensors

AGH

Definition

Let $T^{(1)}_{\alpha_1^{(1)},\alpha_1^{(2)},...,\alpha_1^{(d_1)}}$ and $T^{(2)}_{\alpha_2^{(1)},\alpha_2^{(2)},...,\alpha_2^{(d_2)}}$ be tensors. The *tensor product* of $T^{(1)}$ and $T^{(2)}$ is a tensor $(T^{(1)} \otimes T^{(2)})_{\alpha_1^{(1)},\alpha_1^{(2)},...,\alpha_1^{(d_1)},\alpha_2^{(1)},\alpha_2^{(2)},...,\alpha_2^{(d_2)}}$, being a result of the element-wise product of the values belonging to each constituent tensor:

$$\left(T^{(1)}\otimes T^{(2)}\right)_{i_1,i_2,\ldots,i_{d_1},j_1,j_2,\ldots,j_{d_2}} = T^{(1)}_{i_1,i_2,\ldots,i_{d_1}}\cdot T^{(2)}_{j_1,j_2,\ldots,j_{d_2}},$$

where:
$$\forall_{1 \leq k \leq d_1} : 1 \leq i_k \leq \left| \alpha_1^{(k)} \right|$$
 and $\forall_{1 \leq k \leq d_2} : 1 \leq j_k \leq \left| \alpha_2^{(k)} \right|$.

90 22 / 45

Figure: Diagrammatic notation of a tensor product.

E

< • •

< 🗗 🕨 🔸

Tensors

AG H

Definition

Let
$$\mathcal{T}_{\alpha_1^{(1)},\ldots,\alpha_1^{(m-1)},\alpha,\alpha_1^{(m+1)},\ldots,\alpha_1^{(d_1)}}^{(1)}$$
 and $\mathcal{T}_{\alpha_2^{(1)},\ldots,\alpha_2^{(n-1)},\alpha,\alpha_2^{(n+1)},\ldots,\alpha_2^{(d_2)}}^{(2)}$ be tensors with corresponding indices $\alpha_1^{(m)}$ and $\alpha_2^{(n)}$, $1 \leq m \leq d_1$ and $1 \leq n \leq d_2$, denoted by α . The *contraction* of $\mathcal{T}^{(1)}$ and $\mathcal{T}^{(2)}$ by α is a tensor $(\mathcal{T}^{(1)} \circ_{\alpha} \mathcal{T}^{(2)})$, such that:

$$\begin{pmatrix} \mathcal{T}^{(1)} \circ_{\alpha} \mathcal{T}^{(2)} \end{pmatrix}_{\alpha_{1}^{(1)},\dots,\alpha_{1}^{(m-1)},\alpha_{1}^{(m+1)},\dots,\alpha_{1}^{(d_{1})},\alpha_{2}^{(1)},\dots,\alpha_{2}^{(n-1)},\alpha_{2}^{(n+1)},\dots,\alpha_{2}^{(d_{2})}} \stackrel{\text{def}}{=} \\ \sum_{k=1}^{|\alpha|} \mathcal{T}^{(1)}_{\alpha_{1}^{(1)},\dots,\alpha_{1}^{(m-1)},k,\alpha_{1}^{(m+1)},\dots,\alpha_{1}^{(d_{1})}} \cdot \mathcal{T}^{(2)}_{\alpha_{2}^{(1)},\dots,\alpha_{2}^{(n-1)},k,\alpha_{2}^{(n+1)},\dots,\alpha_{2}^{(d_{2})}}.$$

 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶ Ē 900

Tensors

AGH

Figure: Diagrammatic notation of a rank-two tensors contraction.

5900 25 / 45

3

Tensors

AGH

Definition

Let $T_{\alpha^{(1)},\alpha^{(2)},...,\alpha^{(d)}}$ be a rank-*d* tensor. The *Tensor Train* decomposition of the tensor T is given by the sequence of d tensors $G^{(1)}_{\beta^{(0)},\alpha^{(1)},\beta^{(1)}}, G^{(2)}_{\beta^{(1)},\alpha^{(2)},\beta^{(2)}}, \ldots, G^{(d)}_{\beta^{(d-1)},\alpha^{(d)},\beta^{(d)}}$, such that:

$$T_{\alpha^{(1)},\alpha^{(2)},\ldots,\alpha^{(d)}} = G_{\beta^{(0)},\alpha^{(1)},\beta^{(1)}}^{(1)} \circ_{\beta^{(1)}} G_{\beta^{(1)},\alpha^{(2)},\beta^{(2)}}^{(2)} \circ_{\beta^{(2)}} \ldots \circ_{\beta^{(d-1)}} G_{\beta^{(d-1)},\alpha^{(d)},\beta^{(d)}}^{(d)}.$$

Figure: Diagrammatic notation of a rank-three tensor TT decomposition.

5990 26 / 45

▲帰▶ ▲ 臣▶ ▲ 臣▶

Tensor Networks

AGH

Definition

A set
$$\mathscr{T} = \left\{ T^{(1)}_{\alpha_1^{(1)},\alpha_1^{(2)},\ldots,\alpha_1^{(d_1)}}, T^{(2)}_{\alpha_2^{(1)},\alpha_2^{(2)},\ldots,\alpha_2^{(d_2)}}, \ldots, T^{(N)}_{\alpha_N^{(1)},\alpha_N^{(2)},\ldots,\alpha_N^{(d_N)}} \right\}$$
 of N tensors, where some – or all – of their indices are subjected to contraction, is called the *Tensor Network*.

E

+ = + + # + + = + + = +

Introduction

A note on matrix exponential

AGH

Definition

Let $A_{n \times n}$. The exponential of A is the $\exp(A)_{n \times n}$ matrix given by the following infinite power series:

$$\exp(A) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{1}{k!} A^k = I_n + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \dots,$$

where: k! is the factorial of k.

Definition

Let $A_{n \times n}$ and $B_{n \times n}$. The commutator of matrices A and B is the matrix $[A, B]_{n \times n}$ such that:

$$[A,B] \stackrel{\mathsf{def}}{=} AB - BA.$$

A note on matrix exponential

Theorem

For any two commutative matrices $A_{n \times n}$ and $B_{n \times n}$, the exponential of their sum may be expressed in terms of a product of their exponentials:

$$\exp(A+B) = \exp(B+A) = \exp(A)\exp(B) = \exp(B)\exp(A).$$

Theorem

Let $A_{n \times n}$ and $B_{n \times n}$. The Lie product formula (also called Trotter decomposition or Suzuki-Trotter expansion of the first order) states that:

$$\exp(A+B) = \lim_{k \to \infty} \left(\exp\left(\frac{1}{k}A\right) \exp\left(\frac{1}{k}B\right) \right)^k.$$

TNSAN derivation

AGH

Recalling the solution of Kolmogorov equations:

$$P(t) = \exp\left(t \cdot Q\right),$$

and the definition of SAN descriptor:

$$Q_{\mathcal{N}} = \bigoplus_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{loc} + \sum_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}} + \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}} \right],$$

the following formula holds:

$$P(t) = \exp\left(t \cdot \bigoplus_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{loc} + \sum_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}} + t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}}\right]\right)$$

TNSAN derivation

AGH

$$P(t) = \exp\left(t \cdot igoplus_{k=1}^{N_{\mathcal{N}}} Q^{loc}_{\mathcal{A}^{(k)}} + \sum_{e \in \mathscr{E}^{syn}_{\mathcal{N}}} \left[t \cdot igotimes_{k=1}^{N_{\mathcal{N}}} Q^{e_{pos}}_{\mathcal{A}^{(k)}} + t \cdot igotimes_{k=1}^{N_{\mathcal{N}}} Q^{e_{neg}}_{\mathcal{A}^{(k)}}
ight]
ight).$$

Applying the Suzuki-Trotter expansion:

$$\exp(A+B) = \lim_{k \to \infty} \left(\exp\left(\frac{1}{k}A\right) \exp\left(\frac{1}{k}B\right) \right)^k$$

and denoting $\Delta t = \frac{t}{n}$, one may obtain:

$$P(t) = \lim_{n \to \infty} \left(\exp\left(\Delta t \cdot \bigoplus_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{loc}\right) \cdot \prod_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}}\right) \cdot \exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}}\right) \right] \right)^{n}$$

TNSAN derivation

AGH

Theorem

Let $A_{n \times n}$ and $B_{m \times m}$. The exponential of the Kronecker sum of these matrices may be expressed in terms of the Kronecker product of their exponentials:

 $\exp(A \oplus B) = \exp(A) \otimes \exp(B).$

TNSAN derivation

$$P(t) = \lim_{n \to \infty} \left(\exp\left(\Delta t \cdot \bigoplus_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{loc}\right) \cdot \prod_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}}\right) \cdot \exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}}\right) \right] \right)^{n}.$$

Employing the aforementioned theorem:

$$\exp(A \oplus B) = \exp(A) \otimes \exp(B),$$

and for sufficiently large $n \in \mathbb{N}$, it holds:

$$P(t) \cong \left(\bigotimes_{k=1}^{N_{\mathcal{N}}} \exp\left(\Delta t \cdot Q_{\mathcal{A}^{(k)}}^{loc}\right) \cdot \prod_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}}\right) \cdot \exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}}\right) \right] \right)^{n}$$

< □

TNSAN derivation

m

$$P(t) \cong \left(\bigotimes_{k=1}^{N_{\mathcal{N}}} \exp\left(\Delta t \cdot Q_{\mathcal{A}^{(k)}}^{loc}\right) \cdot \prod_{e \in \mathscr{E}_{\mathcal{N}}^{syn}} \left[\exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{pos}}\right) \cdot \exp\left(\Delta t \cdot \bigotimes_{k=1}^{N_{\mathcal{N}}} Q_{\mathcal{A}^{(k)}}^{e_{neg}}\right) \right] \right)^{n}$$

Finally, each factor of the preceding product for two automata $\mathcal{A}^{(i)}, \mathcal{A}^{(j)}$ affected by a synchronizing event *e* may be expressed as:

$$\begin{pmatrix} i^{-1} \\ \bigotimes_{k=1}^{j} I_{\mathcal{S}_{\mathcal{A}^{(k)}}} \end{pmatrix} \otimes R \cdot \left[\left(\bigotimes_{k=i+1}^{j-1} I_{\mathcal{S}_{\mathcal{A}^{(k)}}} \right) \otimes \exp\left(\Delta t \cdot Q_{\mathcal{A}^{(j)}}^{e_{pos}} \otimes Q_{\mathcal{A}^{(j)}}^{e_{pos}} \right) \right] \cdot \left[\left(\bigotimes_{k=i+1}^{j-1} I_{\mathcal{S}_{\mathcal{A}^{(k)}}} \right) \otimes \exp\left(\Delta t \cdot Q_{\mathcal{A}^{(j)}}^{e_{neg}} \otimes Q_{\mathcal{A}^{(j)}}^{e_{neg}} \right) \right] \cdot R^{-1} \otimes \left(\bigotimes_{k=j+1}^{N_{\mathcal{N}}} I_{\mathcal{S}_{\mathcal{A}^{(k)}}} \right)$$

34 / 45

Pseudocode

Pseudocode

TNSAN Tensor Network

Benchmark problem

∭∭ Agh

- The TNSAN algorithm has been implemented with Julia programming language.
- Multiple numerical tests have been conducted on the resource sharing mechanism model.
- Obtained results have been compared with the reference ones, determined with the EXPOKIT package.

Marginal distribution for the first automaton

Figure: Marginal distribution of an automaton after 10⁵ steps.

< D >

AGH

Figure: Marginal distribution of an automaton after 10⁶ steps.

< D >

AGH

L1-Norm of the results vector in the number of iterations

Iterations number

5 10k

2

⁵ 100k ²

< □

5 1M 2

Figure: \mathscr{L}_1 of the results vector in the number of iterations.

1000

5 10 2 5 100 2 5 1000 2

Figure: \mathscr{L}_{∞} norm of the difference vector in the number of iterations.

< D >

Overall contraction time in the number of iterations

Figure: Main-loop execution time in the number of iterations.

< D >

AGH

€

.∋ .

Figure: \mathscr{L}_1 and \mathscr{L}_∞ norms in the main-loop execution time.

< □

Conclusions

- Within this thesis, a novel algorithm for computing the exponential of matrices expressed by a sum of Kronecker products is proposed. Then, a problem of determining transient probability distribution over SAN states is reduced to the matter of contraction between TNs.
 - Proposed approach is extensively analyzed, both theoretically and numerically. Furthermore, proper applicability areas for the TNSAN algorithm are pointed out on the basis of comprehensive insight into method's properties.
 - This thesis sheds light on previously unexplored field of SANs and TNs hybridization.

AGH