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Goals of this work
Checking the usability of D-Wave 2000Q quantum annealer for solving

problems related to the paradigm of workflow, which includes:

choice of the problem type from workflow problems,

QUBO formulation of such problem
running on the D-Wave 2000Q
discussion on the usability and scalability of the proposed

solution.
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1. Workflow problems




Workflows (0)

® A paradigm commonly used for describing complex
scientific processes and applications.

e Usually represented as DAGs (Directed Acyclic
Graphs)

e Vertices represent tasks

e Edges represent dependencies or data transfers
between tasks

Oa®
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Workflow scheduling

e Planning of execution with respect to given
parameters such as deadline, budget and computing >

resources. u

® An NP-hard problem - strong limitations on the size

o
<

. A le DAG ti kfl
of practically solvable problems N example DAG representing a worktiow




Workflows - examp

e Montage - image mosaic software
used to construct human

perceptible images of sky features

from multiple images captured by
telescopes [1]

e Software calculating seismic
hazard maps based on the data
provided in GUI [2]

Data Analysis Software and Systems (ADASS) XIII. vol. 314, p. 593 (2004)

e applications

Reglon of interest
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[1] Berriman, G., Good, J., Laity, A., et al.: Montage: A grid enabled image mosaic service for the national virtual observatory. In: Astronomical

[2] Maechling, P., Chalupsky, H., Dougherty, M., et al.: Simplifying construction of complex workflows for non-expert users of the southern
california earthquake center community modeling environment. ACM SIGMOD Record 34 (3), 24-30 (2005)
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An example workflow developed in the work [2]




2. D-Wave quantum annealer




D-Wave quantum annealer

Quantum annealing

® a metaheuristic for finding the global minimum of a given
objective function
® searches a set of candidate solutions (candidate states)

e uses quantum fluctuations

Source:https://en.wikipedia.org/wiki/Quantum_annealing
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D-Wave guantum annealer

state. This probability can be changed by applying an external magnetic field.
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Bias - a programmable quantity that controls the external magnetic field applied to each qubit

Source: https://docs.dwavesys.com/docs/latest/c_gs 2.html

Qubits in D-Wave 2000Q are superconducting loops. The qubit can have be in an undefined state
(superposition), in which it’s state is unknown (a), in one of two states with known energies (b), which can be
marked as “0” and “1”. The “free” qubit in superposition state has equal 50% probability of falling into each

Higher
probability
of lower state



https://docs.dwavesys.com/docs/latest/c_gs_2.html

D-Wave quantum annealer

Qubits can interact with each other:

Coupler - a device that can link qubits together so they influence each other

e Coupling strength - a programmable value defining the correlation weights
between qubits

® The bigger the coupling strength is, the more two qubits are likely to end up in the

same state

Two programmable quantities that allow to control and program the quantum annealer:
® bias values
e coupling strengths

Source: https://docs.dwavesys.com/docs/latest/c_gs 2.html
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D-Wave quantum annealer

From the physical point of view the operation done by the quantum annealer is
finding eigenstate with the lowest eigenenergy of the Ising model Hamiltonian,
which for the D-Wave Systems, takes the following form:

H = _Aés) (Z &a(j) (s) Zh 5(%) +Z ;. ; (Z) (J))

7 1>9

Source: https://docs.dwavesys.com/docs/latest/c_gs 2.html
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D-Wave quantum annealer

From the programmer’s point of view quantum annealer searches for the minimum
of the following function (QUBO).

o J4
flz) = Z Qiimi + > Qijziw;  x; € {0,1} ,Jin 7" Qa

i<j

Programming the D-Wave quantum annealer requires providing one input value: matrix Q

Source: https://docs.dwavesys.com/docs/latest/c_gs 2.html
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Minor embedding

An example of a very simple
embedding of a triangle into a
a5 square

° Quantum computer architecture graph is not fully connected, but the
problem solved must match it’s architecture.

am ° The problem must be transformed to the form matching the architecture

an by

o finding it’s minor in this graph

o (if the minor doesn’t exist) representing one variable of a
problem with many qubits using chains

A part of Chimera graph, based on which the D-Wave 2000Q is built

Source: https://docs.dwavesys.com/docs/latest/c_gs_7.html
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D-Wave quantum annealer

D-Wave 2000Q quantum annealer problem solving flow:

Formulating the problem as QUBO
Matching the QUBO with the annealer architecture
Obtaining the results from the machine
Unembedding the results into the initial QUBO
Reversing the QUBO into the actual problem

e whe

Note: matching the QUBO with the annealer’s architecture (and unembedding) are theoretically optional, but practically it is almost impossible for QUBOs of problem to match
the annealer’s architecture without embedding.




3. Jobshop problem on quantum annealer




Job Shop Scheduling Solver based on Quantum Annealing

Davide Venturelli'*?, Dominic J.J. Marchand®, Galo Rojo®
' Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames
2U.S.R.A. Research Institute for Advanced Computer Science (RIACS)

31QB Information Technologies (1QBit)

Quantum annealing is emerging as a promising near-term quantum computing approach to solv-
ing combinatorial optimization problems. A solver for the job-shop scheduling problem that makes
use of a quantum annealer is presented in detail. Inspired by methods used for constraint satisfac-
tion problem (CSP) formulations, we first define the makespan-minimization problem as a series of
decision instances before casting each instance into a time-indexed quadratic unconstrained binary
optimization. Several pre-processing and graph-embedding strategies are employed to compile opti-
mally parametrized families of problems for scheduling instances on the D-Wave Systems’ Vesuvius
quantum annealer (D-Wave Two). Problem simplifications and partitioning algorithms, including
variable pruning, are discussed and the results from the processor are compared against classical
global-optimum solvers.




Job shop problem on quantum annealer

Machines, operations, jobs

® Jobsinclude one or more operations

® Machines run operations, which have execution time
specified

Constraints

® FEach task starts only once
® One machine can run one task at the single point of time
Operations order among each job must be kept




4. Running on D-Wave - QUBO formulation




Workflow scheduling problem (WSP) formulation example

(0)

P - Vector representing graph of paths

P=[[0,1,4,7].]0,2.5,7],]0,3,6.7]]

T - matrix with execution times of each task (columns) on
each machine (rows)

12 6 42 18 30 6 12 24
'=14 2 14 6 10 2 4 8

8 4 28 12 20 4 8 16
K - vector of costs of using machines per time unit

K=1[10 18 ¢

7 D - deadline for all tasks execution

D =45




QUBO formulation for WSP

The QUBO formulation of WSP must consider two factors:

1. total cost of executing workflow
2. constraints, which are:
e Deadline
e Machines assignments - every task has exactly one machine assigned

We assume infinite number of instances of machines and the strictly limited (as an input
parameter) number of types of machines.




QUBO formulation for Workflow
Scheduling Problem (WSP)

Formulating the WSP as D-Wave runnable QUBO includes the
three following steps:

1) WSP -> Binary Integer Linear Programming (BILP)
2) BILP ->QUBO
3) QUBO -> minor embedded QUBO




Binary Integer Linear Programming

Minimize the objective function mzn Ct 5{

(represented by vector c):

Th luti t t th _
cosstr:?n:sl(r):;res:nu‘;d br:eriatrixz AX T b
Ve e X z€{0,1}

and vector b.




BILP for WSP - variables numbering

Binary variables are numbered with the Task no.

following manner (table to the right): 0 1 2 3 4 5
e The matrices are row by row 0 0 1 2 3 4 5
vectorized. 1 8 9 10 11 12 13

® (e.g.)If x,=1 then the task no. 1 is run Machineno 2 16 17 18 19 20 21

on the machine no. 2,
if x,,=0 it is not.

6 7
6 7
14 15
22 23




BILP for WSP - objective function

[ z]m [Ti,jlexm Yij = Ti,j kj man CtX
Machine Task
number number 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 <:>

0 10 12 6 42 | 18 30 6 12 24 120 | 60 | 420 | 180 | 300 60 120 | 240 |X| —1

min g i—0
18 4 2 14 6 10 2 4 8 72 36 252 108 180 36 72 144 1=

LiCq

1

2 6 8 4 28 12 | 20 4 8 16 48 24 168 72 120 24 48 96

Input data: costs vector and times matrix Costs matrix created from input data

The matrix of costs is then vectorized row by row resulting in the following vector
¢ = [120, 60, 420, 180, 300, 60, 120, 240, 72, 36, 252, 108, 180, 36, 72, 144, 48, 24, 168, 72, 120, 24, 48, 96]
The results of optimization take form X = [.CCO, T1,T2..., ajn] for example X = [1,0,0,1,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0, 1]

(variables indexing described in the previous slide)

For the example results vector and costs matrix the costs function can be calculated in the following manner:

C(X)=1-12040-604+0-420+1-180+...+0-48+1-96

Such formulation of vector ¢ from input vector of cost and times matrix is the exact objective function part from BILP formulation, therefore this
part of the BILP formulation has been reached. The next part includes transformation of constraints.




BILP for WSP - machines assignment constraint

a s . | X|—1 .
AX = b <:> Vj € [07 n— 1] (Zi:o szjz) - bj BILP constraints formulation AX=b can be equivalently written with the use of the sum operator

One task can be assigned to one machine only. As the variables Task no.
representing the fact of running tasks on machines are binary, such
constraint can be expressed for each task as sum of all variables 0o 1 2 3 4 5 6 7

representing the particular task being equal to 1, as in the examples 0 O 1 2 3 4 5 6 7
below. 1 8 9 10 1 12 13 14 15
X0 + xS — T = 1 Machineno 2 16 17 18 19 20 21 22 23

Reminder: binary variables’ global indices

1 +x9+ 217 =1
etc. for all tasks

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A fragment of matrix A and vector b representing the machines assignment constraint




BILP for - machines assignment constraint

QUBO is an unconstrained model - all the constraints it groups must be weighed even
if they are mathematically correct

® A new parameter S must be introduced - machines assignment constraint strength
relative to the deadline constraint, with which the constraint takes the following

£_ -

Sxg+ Sxg+ Sxr16 =95
Sty + Sxg+ Sx17 =95

A part of matrix A and vector b for machines assignment constraint.




BILP for WSP - deadline constraint

. X _1 . . . . . . . . . . .
AX@b <:> Vj = [O, n — 1] (ZL:J) szjz) — bj Note:J; is the actual execution time of task (after choice of machine), 'CI is the execution time of task

represented by variable “i” if the task is executed on the machine represented by this variable

@ \Ijo + \I}l + \114 + \I],_{, S D Zl;r;dﬁizxecution times for each path not greater then the
) Uo+ Wy + Vs +W7 <D
Uog+ W3 +VYg+ U7y <D

For binary variables it means that sum of products xt, must be less than or equal to deadline, which is presented in equation below for
path [0,1,4,7] and in matrix for all 3 paths. Note that AX=b is an equation and below there is an inequality - it leads to slack variables
(next slide)

Toltot+x1t1+xatstartr+Tstot+T9to+T12t12+T15t15+T 16816 +L17817+220t20+ 223823 @45

to t1 0 0 t4 0 0 ’[7 t8 tg 0 0 t12 0 0 t1 5 t16 t17 0 0 t20 0 0 t23 45
to 0 ’(2 0o 0 t5 0 t7 t8 0 t10 0 0 t13 0 t15 t16 0 t18 0 0 t21 0 t23 45
to 0 0 t3 0 0 t6 t7 t8 0 0 t1 ; 0 0 t1 4 ’[1 5 t1 6 0 0 t1 g 0 0 t22 t23 45

A part of matrix A and vector b for the deadline constraint.




BILP for WSP - slack variables

AXQbED Vi€ o.n—1] (S ) = b,
x0t0+g;1t1+x4t4+x7t7+x8t9+mgt9+x12t12+:)315t15+x16t16+x17t17+$20t20+$23t23©45

AX=b from BILP is an equation. The deadline constraint is an inequality. Transformation from inequality to equation requires using
additional variable - slack variable such that:

aeN,DeNa<D — dseN:a+s=D

One slack natural variable refers to one equality, therefore |P| such variables are necessary for the WSP formulation (P - list of
paths, |P|=3 for the example problem). For the Binary ILP slack variables must be binary, therefore the binary expansion is used to
represent slack variables e.g.

s = 16S4 - 853 +4s2 +2$1 +35,

° Slack variable’s representation must be long enough to be able to represent the gap between the deadline and the minimum
possible execution time for each path (separately).

° For the example problem each path needs 5-bit slack variable -> 3*5=15 additional binary variables added.

e  The non-deadline parts of matrix A have the slack variables’ values set to 0

This way the workflow scheduling problem has been formulated as binary integer linear programming.




BILP transformation to QUBO

The goal of QUBO is to minimize x‘Qx where Q is an input matrix. Q can be calculated from BILP matrix A and vectors c and b in the
following manner [1] (note: matrix C is a diagonal matrix with vector c values on the diagonal and zeros everywhere else)

y =zl Cx —I—®° (Ax — b)T(Ax —b) = tTCr+x'Dx+c=2TQx+c

Transformation from BILP with matrices A,C and vector b to QUBO with matrix Q

f($) — ZQz,zxz = ZQi,jxixj I; € {O, 1}
P i<j

A function defined by QUBO matrix that is minimized in QUBO

A new parameter P needs to be introduced as QUBO has no space for constraints definition, it only allows one square matrix as an
input. It defines all penalties strength relative to the costs function.

[1] Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using qubo models (2019)




5. Running on D-Wave - Minor embedding




Minor embedding

A part of Chimera graph, based on which the D-Wave 2000Q is built

Source: https://docs.dwavesys.com/docs/latest/c_gs_7.html

An example of a very simple
embedding of a triangle into a
square

° Quantum computer architecture graph is not fully connected, but the
problem solved must match it’s architecture.
° The problem must be transformed to the form matching the architecture
by
o finding it’s minor in this graph
o (if the minor doesn’t exist) representing one variable of a
problem with many qubits using chains



https://docs.dwavesys.com/docs/latest/c_gs_7.html

Minor embedding

A very simple undirected An extract from the Chimera An embedding of the triangle
graph, which could represent graph (which is the D-Wave into the presented part of the
a problem - triangle 2000Q architecture) Chimera graph with the use of

chain strength

A new parameter is introduces: chain strength, which is the value of coupling
strength between physical qubits that are minor embedded as one logical qubit

Source: https://docs.dwavesys.com/docs/latest/c_gs_7.html
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Minor embedding

10 11 12 13 14 15 16 17 18 19 20 21 22 23

t0 t1 0 0 t4 0 0 t7 t8 tg 0 0 t12 0 0 t15 t16 t17 0 0 t20 0 0 t23 45
t0 0 t2 0 0 t5 0 t7 t8 0 t10 0 0 t13 0 t15 t16 0 t18 0 0 t21 0 t23 45
t0 0 0 t3 0 0 t6 t7 t8 0 0 t11 0 0 t14 t15 t16 0 0 t19 0 0 t22 t23 45

A part of matrix A and vector b for the deadline constraint.

There are lots of interactions between bits in this model e.g. bit representing t, interacts will
all other bits. For this reason the resulting QUBO matrix is dense (graph has high
connectivity). Therefore we use the simple complete graph embedding (see: next slide).

Source: https://docs.dwavesys.com/docs/latest/c_gs_7.html
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Minor embedding

A complete graph can be embedded
into Chimera graph as presented.
Each vertex of complete graph K is
represented by 3 vertices in Chimera
graph (except no. 8). Every other
graph with the size less than size of a
complete graph (9 in this case) can be
first embedded in the complete graph
and then as complete graph into
Chimera, because every graph is a
minor of the complete graph with the
same number of vertices.

A complete K, graph

An embedding of the K,
graph into 2x2 Chimera graph




Minor embedding

An expansion of the complete
graph embedding technique
into the potentially infinite
Chimera lattice. Using this
- method it is possible to
T minor-embed the complete
graph with 65 vertices on the
16x16 Chimera lattice.




6. Results




Results - problem instances solved
(0) (o) (0)

JOJOXOIONOJOLC

& 4 \4) <3> ‘D
Problem no 1 Problem no 2 Problem no 3
{s)
No.|Binary variable count T K paths
The following instances of problems were solved 63129
. . . 1)4 ?1) ) ’27
in this work. Problems with numbers 2 and 3 have 1 8 2143 1.4 110,1,31,[0,2,3]]
the same graph (and what follows: the same 9 10 631296 [1,4] 110,1,4],[0,2,41,[0,3,4]]
paths), but differ in number of machines and their 21 4 32]
costs 631296
' 3 15 21 4382 [1:5:2] [[0,1,4],]0,2,4],[0,3,4]]
42 8 64
[12 6 42 18 30 24
4 18 4214 6 10 8 | [K=[8,18,6]|[[0,1,3,5],[0,1,4,5],[0,2,4,5]|
8 428122016




Results - finding parameters’ values

Three parameters need to be set up before creating the QUBO matrix:
e P - penalty strength relative to the costs function
® S-single execution constraint strength (relative to general penalty constraint parameter P
e Chain strength - the value of coupling strength between physical qubits that are minor
embedded as one logical qubit

For the purpose of this proof of concept
e values of parameters P and S were found with the use of Gurobi
[1] sampler,
e chain strength was tested both with Gurobi and the D-Wave
annealer

[1] https://www.gurobi.com/
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Results - parameters’ va

Uues

No.|Binary variable number|Deadline| P| S |Chain strength|Percentage of correct
solutions
1 8 19 8 110 1200 62,5%
2 10 19 (14(25 6650 56,25%
3 15 ¥ (1130 2800 54,3%
4 18 70 6 |40 18000 46,91%

In the previous parts three parameters were introduced: S,P and chain strength. Each of these parameters must have
been found. A Gurobi sampler was used to find parameters P,S, for chain strength Gurobi with D-Wave 2000Q were
used. Doing so is possible for small instances. For large instances the algorithms and heuristics for finding these values
would be highly usable. The percentage of correct solutions value describes how likely the random solution (from
uniform distribution over the whole solutions’ space) is to be correct for. The correctness is defined as meeting all the
constraints.




Results

No.|Binary Correct solutions|Unique Global opti-|Time Cost
variables [samples (from|correct mum found
number  |2000 samples) solutions
1 |8 98 10 (100%) |YES 19(d=19)|34(min=34)
2 |10 27 14 (77.8%) |YES 16(d=19)|40(min=40)
3 |15 4 4 (3.03%) |NO (6) 16(d=17)|45(min=40)
4 |18 0 0 (0%) NO (65862) [N/A N/A

Each of the four problems was sampled 2000 times. The third column shows how many samples with correct results were
returned. The next column describes how many unique samples with correct solutions were returned and their percentage
from all the correct solutions (e.g. for the first problem all of the 10 correct solutions were found in 98 samples, in the third

only 4 out of 132 possible correct solutions were found, one sample for each).




Results - reference methods

Four methods were used to compare with the D-Wave 2000Q performance. Three of them always found the global optima. The
method doing exactly the same as the D-Wave 2000Q (Gurobi solving the minor embedded QUBO) had a similar performance: for
three problems found the global optimum, for the largest did not).

Methods always finding the global ® Gurobi for minor embedded

optima QUBO
e Brute force for the WSP No.|Binary variables|Global optimum found
® GNU Linear Programming Kit niitiiber
for BILP [1] 1|8 YES
e Gurobi for QUBO 2 |10 YES
3 (15 YES
4 |18 NO, wrong (22831)

[1] https://www.gnu.org/software/glpk/
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Results

Problem 2

Problem 1

0.15 A

5. 0.08 - _— wrong:solutions; || . M. wrong:solutions The histograms present the samples’ distribution for
= I correct solutions = Il correct solutions . .
B a each problem. The correct solutions are marked with
9] 4 ] 4 .

= Q.06 2 040 green color. These results are coherent with the column
= 0.04 - = from results table presented below.

Q ) Q

§ § 0.05 -

2 0.021 2

low energy high energy low energy high energy COI‘I‘GCt SOlutiOIlS
Problem 3 Problem 4
samples (from
< 0.125 4 I wrong solutions " I wrong solutions
2 aris B correct solutions | £ 0.06 7 EEE correct solutions 2000 samples)
c 0. 1 c
s 0.075 S 0.04 98
> 0. 1 > 0.04
‘8 0.050 - ®
9 < 0.02 1 4
a 0.025 A a
0
0.000 - 0.00 -

low energy high energy low energy high energy




7. Conclusions and possible improvements




Conclusions

It is possible to solve the basic instances of workflow scheduling problems

Obstacles:
e Slack variables number - increasing logarithmically with the deadline
value and linearly with the paths number
® P and S parameters - need for testing a lot - impossible for larger
instances
® High connectivity in problem graph - long chains

Possible improvements:
e Different problem translation (e.g. changing the encoding of variables [1])
® Using time windows
e Dividing the QUBO into smaller instances

[1] Nicholas Chancellor. Domain wall encoding of discrete variables for quantum annealing and gaoa. Quantum Science and Technology, 4(4):045004, 2019
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Abstract. Many scientific processes and applications can be represented
in the standardized form of workflows. One of the key challenges related
to managing and executing workflows is scheduling. As an NP-hard prob-
lem with exponential complexity it imposes limitations on the size of
practically solvable problems. In this paper, we present a solution to the
challenge of scheduling workflow applications with the help of the D-
Wave quantum annealer. To the best of our knowledge. there is no other
work directly addressing workflow scheduling using quantum computing.
Our solution includes transformation into a Quadratic Unconstrained
Binary Optimization (QUBO) problem and discussion of experimental
results, as well as possible applications of the solution. For our exper-
iments we choose four problem instances small enough to fit into the
annealer’s architecture. For two of our instances the quantum annealer
finds the global optimum for scheduling. We thus show that it is possible
to solve such problems with the help of the D-Wave machine and discuss

the limitations of this approach.
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