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Bayesian Networks

What are Bayesian Networks?

Classically

graphical (directed, acyclic)
probabilistic models

vertices - random variables
(events) with given
probabilities of occurences

edges - conditional
dependence of variables on
each other

Figure: An example classical
Bayesian Network



Quantum Bayesian Inference
Introduction
Bayesian Networks

Use cases of Bayes Nets

Inference
what is the chance of raining?
what is the chance that my grass is going to be wet given
it rains?
what is the chance that it was cloudy given my grass is
wet but my sprinkler wasn’t working?

Structure and parameter learning (irrelevant to this talk)
Given historical data on clouds, rain, sprinkler activity and the
wetness of grass I can learn things like:

clouds cause rain (not the other way around)
grass tends to be wet more often when it rains
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The motivation - non-cooperative games

multiple players compete with each other
players employ strategies in order to win - those strategies
must account for the rules of the game, as well as the
opponents

Nash Equilibrium
No player can benefit by changing his strategy while the other
players keep theirs unchanged.
More formally, if σ∗ is a strategy profile being Nash
equilibrium, then for every player i and every strategy σi , the
payoff function for player i satisfies: ui(σ∗) ≥ ui(σi , σ

∗
−i)
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Example - Monty Hall game

two players - Player and the
Host

three closed doors with a
prize behind one of them

after the Player’s first choice
of the door, the Host opens
one of the remaining two
doors, to reveal that it is
empty

the Player can then alter
their original choice

in classical case, the Player
has 2

3 chance of winning by
altering their choice

Figure: three choices the Player
can make
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Beyond classical strategies - quantum games

Research suggests that generalizing to quantum games may
yield optimal strategies superior to the classical ones in games
such as Monty Hall [Kurzyk and Glos, 2016] and Prisoner’s
Dilemma [Eisert et al., 1999, Szopa, 2013].

Quantum game
is a generalization of its classical version and can be
reduced to it
uses concepts from quantum computing, unavailable in
classical version
yields results unavailable in its classical version
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Bayesian Networks help us model games

events in a game can be
modeled as a Bayes
network
probability distributions
of events reflect the
players’ strategies
through Bayesian
inference, various
scenarios and outcomes
of the game may be
analyzed

Figure: A classical Bayesian
Network modelling the Monty
Hall game
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Quantum Bayesian networks

possibility of an acausal
connection - some of the variables
in the network are entangled
a system of entangled variables in
the network must be described
with joint probability distribution
(in this example - ρAB)
distributions of participants of
such systems can be calculated,
but they don’t tell the complete
story

Figure: States of
systems A and B are
entangled (zigzag line),
and there is classic
dependence of C on A
and B (arrows).
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Quantum probability operators I

A classical distribution σA of a discrete random variable A can
be generalized by a density operator ρA ∈ L(HA), where:

ρA = ρ†A
ρA ≥ 0,Tr(ρa) = 1
L(H) is a set of linear operators on complex Hilbert space
H

Generalizing classical to quantum probability
σV = [p0, p1, ..., pn−1]
pi - probability of the
i-th state∑N−1

i=0 pi = 1

|i〉 - vector representing
the i-th state
ρV = ∑N

i=1 pi |i〉〈i | -
density matrix
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Quantum probability operators II
Density matrices of quantum superpositions

|ψ〉 = α|0〉+ β|1〉

|α|2 + |β|2 = 1

ρψ = |ψ〉〈ψ| =
(
|α|2 αβ
αβ |β|2

)

Classical mixture of N quantum states
|ψi〉 - a quantum state achieved with probability pi

ρψ =
N∑

i=1
pi |ψi〉〈ψi |
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Generalizing Bayesian theory to the quantum
realm I
Joint probability distribution of a system of variables

ρAB ∈ L(HAB) = L(HA ⊗HB) - joint distribution of (A,B)
ρA = TrB(ρAB) - partial tracing

? operator

X ? Y = Y 1
2XY 1

2

X ,Y ∈ L(H)

non-commutative
non-associative

Conditionality
B conditionally dependent on A
ρB|A ∈ L(HAB)
TrB(ρB|A) = IA
IA - an identity operator ∈ L(HA)
ρAB = ρB|A ? (ρA ⊗ IB)
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Generalizing Bayesian theory to the quantum
realm II

Applying evidence
Knowledge that the actual state of A is |a〉 transforms ρAB into

ρA=a,B = (|a〉〈a| ⊗ IB)ρAB(|a〉〈a| ⊗ IB)
(|a〉〈a| ⊗ IB)ρAB

(1)
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Inference in Bayes Nets

Inference in Bayesian Networks is an NP-hard problem
[Kwisthout, 2015].

Naive algorithm
Given a Bayes Net with variables [1, ...n]:

1 compute the joint probability of the whole net:

ρV1,...,Vn = ?n
i=1(I1 ⊗ I2 ⊗ ...Ii−1 ⊗ ρi ⊗ Ii+1 ⊗ ...⊗ In) (2)

2 apply evidence (if any) using (1)
3 trace the result to obtain the desired joint probability

Exponential memory complexity!
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Belief Propagation algorithm I

1 network is converted to a tree structure ("Junction tree")
2 each vertex in a tree contains a subset of variables from

the network with partially initialized probabilities
3 evidence is applied
4 vertices pass "messages" between each other in order to

gain full knowledge about the state of the tree

Steps (1) and (2) are identical regardless of whether the
network is classical or quantum. In step (3) equations for
messages with quantum states slightly differ in quantum
version.
We are still researching a correct implementation of the
quantum version of the algorithm.
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Belief Propagation algorithm II

(a) A Bayes net (b) Moralization of the graph
and building a clique of the
variables we’re infering
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Belief Propagation algorithm III

(c) Triangulation of the graph
(d) Clique of the triangulated
graph become vertices of the
junction tree

Figure: Building an optimal junction tree
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Belief Propagation algorithm IV
Knowledge gathering by vertex W

W updates the knowledge about its state by gathering
"messages" from its neighbors in the tree

ρW = 1
Y · µW ?

∏
v∈neighbors(W )

mv→W

mv→u carries the knowledge about the state of variables
shared by v and u from v ’s perspective

mv→u = 1
Y Tru(µv ? [(

∏
v ′∈neighbors(v)/u

mv ′→v) ? νv :u])

knowledge is gathered recursively by the vertex containing
the variables we want
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AcausalNets.jl

a Julia (1.0) library supporting inference in a quantum
generalization of Bayesian networks
available on GitHub:

https://github.com/mikegpl/AcausalNets.jl

the repository also contains usage examples in a form of
Jupyter Notebooks

https://github.com/mikegpl/AcausalNets.jl/
tree/master/notebooks

M. Przewiezlikowski, M. Grabowski, D. Kurzyk and K.
Rycerz "Support for high-level quantum Bayesian
inference" accepted for ICCS 2019 12-14 June, Faro,
Portugal.

https://github.com/mikegpl/AcausalNets.jl
https://github.com/mikegpl/AcausalNets.jl/tree/master/notebooks
https://github.com/mikegpl/AcausalNets.jl/tree/master/notebooks
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Implementation details I

Our goals

simplicity of computations

abstracting out as much math as possible

extendability of the library

Functionalities

defining random variables, systems of random variables

building Bayesian networks as graphs with systems as vertices

performing inference

naive algorithm works for all networks
we are still working on belief propagation for quantum
networks



Quantum Bayesian Inference
Overview of AcausalNets.jl

Implementation details II
Listing 1: Defining variables, systems and Bayesian network in AcausalNets.jl� �

# discrete variables
var_a = Variable ( :a , 3)
var_b = Variable ( :b, 3)
var_c = Variable ( : c , 3)
# distr ibut ions
roA = diagm(0 => [1/3,1/3,1/3] )
roB = diagm(0 => [1/3,1/3,1/3] )
roCwAB = diagm(0 =>[0,1/2,1/2, 0 ,0 ,1 , 0 ,1 ,0 ,

0 ,0 ,1 , 1/2,0 ,1/2, 1 ,0 ,0 ,
0 ,1 ,0 , 1 ,0 ,0 , 1/2,1/2,0 ] )

# variable systems
sys_a = DiscreteQuantumSystem( [var_a] , roA)
sys_b = DiscreteQuantumSystem( [var_b] , roB)
sys_c_ab = DiscreteQuantumSystem( [var_a , var_b] , [ var_c ] , roCwAB)
# defining the network
an = AcausalNet()
push! (an, sys_ab)
push! (an, sys_c_ab)� �
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Implementation details III

Figure: Submodules of AcausalNets.jl
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More on the Julia language

Benefits

a unique, well-designed
approach to typing -
dynamic, nominative,
parametric

methods overriding
mechanism

speed of the language,
especially when it comes to
numeric computations

good documentation

Jupyter Notebook support

Drawbacks

the language has only
recently achieved maturity
(July 2018)

third-party packages’
developers don’t always
keep up with the
development of the
language

relative unpopularity →
small amount of
development tools

compiling slows
development down
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Experiments with Monty Hall I

we use AcausalNets.jl to reproduce results of the research on
quantum strategies in Monty Hall [Kurzyk and Glos, 2016]

we aim to find a quantum state AB in which the Player and the
Host both have 50% chance of winning - a Nash equilibrium

for that purpose, we build appropriate Bayesian networks and
analyze the probabilities of |a〉 = |c〉 under various conditions

https://github.com/mikegpl/AcausalNets.jl/blob/master/
notebooks/inferrer_monty_hall.ipynb

https://github.com/mikegpl/AcausalNets.jl/blob/master/notebooks/inferrer_monty_hall.ipynb
https://github.com/mikegpl/AcausalNets.jl/blob/master/notebooks/inferrer_monty_hall.ipynb
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Experiments with Monty Hall II
We consider the following quantum states of (A,B)

ρ̃AB = 1
3(|00〉+ |11〉+ |22〉)(〈00|+ 〈11|+ 〈22|) (3)

ρ̂AB = 1
6(|01〉+ |10〉)(〈01|+ 〈10|)

+ 1
6(|02〉+ |20〉)(〈02|+ 〈20|) (4)

+ 1
6(|12〉+ |21〉)(〈12|+ 〈21|)

ρ̃AB

always |a〉 = |b〉
ρ̂AB

always |a〉 6= |b〉
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Experiments with Monty Hall III
What is the chance of Player winning if their choices
are entangled with prize placement?

λ ∈ [0, 1]
we examine
combinations
λρ̃AB + (1− λ)ρ̂AB

we look for a λ for
which there is a
50% chance that
|a〉 = |b〉
we assume prior
knowledge of
|b〉, |c〉 and infer |a〉

Figure: Probability of |a〉 = |b〉 for
various combinations
λρ̃AB + (1− λ)ρ̂AB
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Related work

original paper with Monty Hall experiments we reproduced: [Kurzyk
and Glos, 2016]

examples of quantum games and strategies beyond Monty Hall:
[Szopa, 2013, Eisert et al., 1999]

classical Bayesian Networks and inference: [Huang and Darwiche,
1996, Yedidia et al., 2003]

quantum Bayesian theory, generalization of inference: [Leifer and
Poulin, 2008]

Julia programming language: [Bezanson et al., 2017],
https://julialang.org/

https://julialang.org/
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Summary

employing quantum strategies in games can yield results impossible
with the classical ones

Bayesian networks are graphical probabilistic models which help
model related random variables

among other use cases, they are useful for modeling
events in games
in order to analyze quantum games, we need a
generalization of Bayesian nets where acausal
connections between variables are possible

AcausalNets.jl is a Julia library which helps model Bayesian
networks with acausal connections

using AcausalNets.jl, we perform experiments with a quantum
version of Monty Hall game



Quantum Bayesian Inference
Summary

Bibliography I

J. Bezanson, A. Edelman, S. Karpinski, and V. Shah. Julia: A fresh
approach to numerical computing. SIAM Review, 59(1):65–98, 2017.
doi: 10.1137/141000671. URL
https://doi.org/10.1137/141000671.

Jens Eisert, Martin Wilkens, and Maciej Lewenstein. Quantum games
and quantum strategies. Phys. Rev. Lett., 83:3077–3080, Oct 1999.
doi: 10.1103/PhysRevLett.83.3077. URL
https://link.aps.org/doi/10.1103/PhysRevLett.83.3077.

Cecil Huang and Adnan Darwiche. Inference in belief networks: A
procedural guide. International Journal of Approximate Reasoning, 15
(3):225 – 263, 1996. ISSN 0888-613X. doi:
https://doi.org/10.1016/S0888-613X(96)00069-2. URL
http://www.sciencedirect.com/science/article/pii/
S0888613X96000692.

https://doi.org/10.1137/141000671
https://link.aps.org/doi/10.1103/PhysRevLett.83.3077
http://www.sciencedirect.com/science/article/pii/S0888613X96000692
http://www.sciencedirect.com/science/article/pii/S0888613X96000692


Quantum Bayesian Inference
Summary

Bibliography II

Dariusz Kurzyk and Adam Glos. Quantum inferring acausal structures
and the monty hall problem. Quantum Information Processing, 15
(12):4927–4937, Dec 2016. ISSN 1573-1332. doi:
10.1007/s11128-016-1431-8. URL
https://doi.org/10.1007/s11128-016-1431-8.

Johan Kwisthout. Lecture notes : Computational complexity of bayesian
networks. 2015.

M.S. Leifer and D. Poulin. Quantum graphical models and belief
propagation. Annals of Physics, 323(8):1899 – 1946, 2008. ISSN
0003-4916. doi: https://doi.org/10.1016/j.aop.2007.10.001. URL
http://www.sciencedirect.com/science/article/pii/
S0003491607001509.

Marek Szopa. Dlaczego w dylemat więźnia warto grać kwantowo? 01
2013.

https://doi.org/10.1007/s11128-016-1431-8
http://www.sciencedirect.com/science/article/pii/S0003491607001509
http://www.sciencedirect.com/science/article/pii/S0003491607001509


Quantum Bayesian Inference
Summary

Bibliography III

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Exploring
artificial intelligence in the new millennium. chapter Understanding
Belief Propagation and Its Generalizations, pages 239–269. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN
1-55860-811-7. URL
http://dl.acm.org/citation.cfm?id=779343.779352.

http://dl.acm.org/citation.cfm?id=779343.779352

	Introduction
	Usage of Bayesian Networks in quantum games
	Overview of AcausalNets.jl
	Experiments with Monty Hall game
	Summary

