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About quantum mechanics

Richard Feynman (1918-1988)

| think it is safe to say that no
one understands quantum
mechanics. Do not keep saying
to yourself, if you can possibly
avoid it, “But how can it be like
that?” because you will get
“down the drain” into a blind
alley from which nobody has yet
escaped. Nobody knows how it
can be like that.

- Richard Feynman

Those who are not shocked
when they first come across
guantum mechanics cannot
possibly have understood it.

- Niels Bohr
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Quantum computing advantages

Wave-particle duality = every particle or quantum entity may be
described as either a particle or a wave..

* It expresses the inability of the classical concepts "particle” or "wave" to fully describe the
behavior of quantum-scale objects.

ITISUSEDTO INTERACTWITH QUBITS THROUGH INTERFERENCES.

Probabilistic system = any given state can be observed.

There is a computable probability corresponding to the likelihood that any given state will
be observed if the system is measured.

Quantum computation is performed by increasing the probability of observing the correct
state to a sufficiently high value so that the correct answer may be found with a reasonable

amount of certainty.

A QUANTUM RESULT IS GENERALLY AN EVALUATION OF THE QUBITS
FINAL STATES.

In general, a quantum computer with n qubits
can be in any superposition (as Schrodinger’s
cat) of up to 2" different states. This compares
to a normal computer that can only be in one of
these 2" states at any one time.
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Quantum computing advantages
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Superposed states = can be in all possible states at the same time. ‘/-‘S> »/"ﬁ')

With respect to a quantum computer, this means that a quantum register exists in a superposition
of all its possible configurations of 0's and I's at the same time, unlike a classical system whose
register contains only one value at any given time. It is not until the system is observed that it
collapses into an observable, definite classical state. For example, the electron spin can be up and
down at the same time.

« THIS ALLOWS SUPERPOSED CALCULATIONS, THUS DRAMATICALLY
DECREASING COMPUTING TIME

Entanglement = cannot be decomposed into more fundamental part.

* Two distinct elements of a system are entangled if one part cannot be described without taking the
other part into consideration.

* An especially interesting quality of quantum entanglement is that elements of a quantum system may
be entangled even when they are separated by considerable space.

* Quantum teleportation, an important concept in the field of quantum cryptography, relies on
entangled quantum states to send quantum information adequately accurately and over relatively
long distances.

« ENTANGLEMNT IS USED TO LINK THE QUBITS (2 or 3-qubits logic gate) IN
QUANTUM COMPUTING AND SYNCHRONIZE THEM.

This two properties confer a

sort of parallelism to a QC and 2 ---a-@
bring the freedom to program

designers, to do better than

classical equivalents. Entanglement

Particle A Particle B

Instantaneous action at distance

Quantum Computing. A technology of the future already present. PwC point of view 2019
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Quantum public investments

Europe:
flagship
project of
€1.2B over Russia:

10 years $790M
UK:€I1B : (Dec 2019, 5
2014- " France: years)

€1.4B

over 5 /\r\

years lsrael: China: $2B

USA:$1.2B (January
for 2019- 2000 4 SN since 2006

2024 - $10B

(signed by b
announced

Trump in 2019)
. for 2020*

Europe is setting up a quantum effort to compete with US. IN Europe, UK was first to invest in QC (2013).
China is also involved in QC (Huawel, Alibaba ...). They are at 10-20 qubits development today, so late compared to US
but China wants to be world quantum leader in 2024 ($10B investment). Map above shows major investments. There are
also investment plans in Canada, Australia, Netherlands, Japan, Austria, Singapore.

[ 14
More than $16B worldwide
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Quantum computing aplications
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Advertisements strategy

COY ROETNES  \Weather forecast  Consumer behaviour

,__'é——_

Cryptography Vi

/

Smart grid
Oil well optimization

A few examples of
applications for a
quantum computer

(34

Risk analysis ~ Trading strategies
Portfolio optimization =R
Market forecast .
Asset pricing

™,

Fraud detection \

Catalyst & enzyme design L& M:ﬂ:;:al
Radiotherapy optimization Pharma iy

Pharma R&D Patient diagnostics

Materials
I science

: ~
Logistics, planning, distribution |-lfl_4f|
: IC manufacturing & design

Traffic simulation =
E-charging station & parking search
Autonomous driving

Ascending phase simulation
' Materials for airplanes 1
Earth observation

New materials
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Nobel prizes for applications of GT to economics:
1994 Nash, Harsanyi, Selten “for their pioneering analysis of
equilibria in the theory of non-cooperative games”

2005 Aumann i Schelling “for having enhanced our understanding
of conflict and cooperation through game-theory analysis”

2007 Leonid Hurwicz, Eric Maskin i Roger Myerson ,for having laid
the foundations of mechanism design theory"

2012 Alvin Roth, Lloyd Shapley , 7or the theory of stable allocations
and the practice of market desigr’.

2020 Raul Milgrom, Robert Wilson " for improvements to auction
theory and inventions of new auction formats. "

L

2001 “Beatiful mind”
movie about Nash



Games and probabillity distributions

We consider two player games

G = (N, {SX}XGN, {PX}XEN)

where:
N =i,_4_,ﬂis the set of players

S, =1{4,,4.}, Sy = {B,, B;} are possible pure strategies

Py:Sy x Sp — {v& e R |i,j = 0,1}, X = A, B, are payoff functions,
represented by the game bimatrix

((Uéo»v(])go) (v641’v(1)31)>
(Ufo»vfo) (Ufpvﬁ)

Let

A(Sy X Sp) = {Zi,j=0,1 0ijA;B; | Oij =2 O'Zi,j=0,1 Oij = 1}

be the set of probability distributions over S, x Sg



Mixed strategies and Nash equilibria

=/
If the set of probability distributions can be factorized q;\k q(( =

CJ;k (0'00 J01) _ ( 040p GA(l - GB) )
(/“'GAD o0 011) \(1-a)oy (1—0a)(1—ap)
they define mixed strategies g, oz€ [0,1].C p /- Ca

The mixed classical game is

G = (N@, ASg, AP,, AP;)

where {O'XXO + (1 — O'X)Xl | 0 <oy <1} =[0,1]. The executor performance

depends on the
goalkeeper's strategy

Mixed strategies form a subset of all probability distributions

0, 0,
1000600alkeeper to the riglrg)t0 &
AS, X ASz = A(S, x Sg)
90

The pair of strategies (o, 05) € AS, x AS is a Nash equilibrium

80
Iff AP, (0}, 02) = AP, (0,,07) and APy (o), 07) = APy(a),05), °
60
for each oy € ASy, X = A,B EQ

executor left executor right



Pareto optimality
and correlated equilibria

A pair of strategies (g4, 03) € S is not Pareto optimal in S if there exists
another pair (g,',05") € S that is better for one of the players and not

worse for the other. Otherwise (g,,05) € S is called Pareto optimal.

Probability distribution {a;;} _ |
of the game G is a correlated equilibrium iff

over set of strategies (4;, B;); j=o1

A A B
Zj=0,10ij Vij 22j=0,10ij V_ij and Z] =0,1 9ji Vji ZZ, =0,1 9ji Vj(-i)

—

where —i # i Is the index of the remaining strategy.




Efficiency of selected classical games
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Efficiency of selected classical games
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Quantum game preliminaries

The standard quantum game in Eisert-Wilkens-Lewenstein quantization
scheme is: (Eisert et al, PRL 83, 3077 (1999)

gL = (I\V ) {UX}XEN' {HX}XEN)

where:
N = {A, B} is the set of players 2

The unitary transformations Uy = U(8, a4, Ba), Ug = U(Og, ag, Bg)

cos% elPx SinH—X

77 2
U(Qx, Ay, :BX) — O 0){ . HX ’
‘e Bx gin— &' ros—
y € “ros=
QX (S [O, T[], Ay, ﬁX (S [O,ZT[],X = A,B &_@,,e,)e_a
S T \ / y C/
: /
are quantum strategies. & ;.
1) = (o) +8[27 197 = u(®..8,,8,) 1¥>

) = [ o]



EWL approach

The quantum EWL approach to the game is

Player A

100) =

~
<
o
S

)

S

where: |00) is the initial state

J= \/%(IA +i0,®0,).JT are the entangling, disentangling operators,

; 0 . i . 6
R e'%X cos =+ iethx sin—-
UX(HXJ aXJﬁX) =\ . . Ox . 0 , X =A4,B,
ie~thx sin—=  e™""X cos—

|¢f> = Xij=01DPij |ij), is the final state defining the game payoffs



Quantum game payoffs

[,:SU(2) x SU(2) — R are payoff functions defined by:

My (U, Up,v) =Lzllc,l:0 vl)c(,l|<qjk,l(y)|i4®£]/B|qj(y)>|2» X=AB

Wi, (1)) = Ce®C [P (¥))

In case of a fully quantum case y = mn/2 :
l_[X(Z]A' Z73) — Zk,l=0,1 |Pkl|2 vl)c(l’ X =A,B,

where:
2 — 0 (6p . )9B]. Q 0 X1 N
it < By AT
6 0 —
Ipo1]* = cosfsinTBcos(aA — Bg) + Sin?ACOSTBSin(aB — L), |O)Ol_i H
6 0 0 I
Ip1ol* = C057ASiH7BSin(05A —Bp) + sin%cosfcos(ag — Ba), |0)oz‘i M (PN —H
|P111% = cos—cos—sin(a, + ag) — sin—-sin—cos(B, + Bp)- |0)o,~H| H

PNEESHESEES

2 2 2 2



Quantum Pauli strategies

Strategies U, = U(0,, a4, B4) and Uy = U(63, ag, Bz),

, are generated by Pauli strategies:

(0,0,8) = ((1) (1))

(ﬂan)—(ol _i),
(nan/Z):((l) _)
ﬁZ—UOn/Z,B) ((‘) _l,)

i 0 . . 0
R e cos—* iethx sin—*
Ux(0x, ax, Bx) = : P . 9

ie thx sin;X el cos =X

=
I
<)

Il
)

Py

ia
||
)

L
V2

)

where
7= )5=0 o= )

are Pauli matrices




Classical limit of the quantum game

Le us assume a = =0, in this case

. g . 0
U(o,0,0) = COSEI + isinEJx

IS equivalent to the classical mixed strategy

B
cos? % sin? %
; 2 2
A
< cos? B3 (ago, boo) (a1, bo1)
2 04
Sin 7 (@10, b10) (a1, b11)
HB = O HB =T

and the payoffs are

v 6
$a8) = a(b)gg cos? 2 cos?2 2 + a(b)y, cos?

2 2
0

+a(b)1o sin? == cos? = + a(b),4 sin? = sin?

2 2 2

o m= ((1))

Op

2



EWL with Frgckiewicz-Pykacz
parameterization

Let us restrict the set of quantum strategies to

. 6 . 6
e ¢X O;—)D _e_l(pX Sln_X

s _ 2 2
UX(HXI ¢X) - . . QX _ HX
el®x gin—= elPx cos—=—
2 2
. 1 0
Po=0000)=(, ;)

* In this parameterization, there are Nash equilibria in pure strategies
which do not exist for SU(2) parameterization

* F-P parametrization is invariant with respect to strongly isomorphic

transformation of input games




Quantum game In Pauli strategies

The payoff matrix of Pauli strategies in the EWL scheme

Player B
Py P, P, P,
\P;/ (aoo:boo) (301»bo1) (a1o:b1o) (311»b11)
; P, (alo,blo) (811,b11) (aoo'boo) (301'bo1)
=y ~ A_ ya N
N v T (a01,bo1) (ago, b00) (311' b11) (310; b10)
]3; (311'b11) (a1o»b10) (301'b01) (aoo'boo)

one can also construct mixed Pauli strategies defined by
guadruples of coefficients:

AUy = A(Uyx) = {Za=0,x,y,z Ué(P; | 0 < O-c)r(; Za=0,x,y,z O-c)x( =1}, X=4,B,




Quantum Mixed Equilibria
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Payoff B
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Quantum absentminded driver
on IBM-Q

P. Frackiewicz, K. Rycerz, M. Szopa;
Quantum absentminded driver problem revisited,
subm. to Quantum Inf. Processing
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Conclusions

Correlated equilibria significantly improve paretoefficiency of Nash
equilibria and they can be obtained in quantum games

Quantum games give players new strategies not available in classic
games and strongly depend on the parameterization used

Nash equilibria of quantum in mixed strategies are close to
paretoefficiency of correlated equilibria

FP parameterization provides a strong isomorphism of the quantum
game and gives the same Nash equilibria in mixed strategies as full
SU(2) parameterization of EWL

The entanglement of initial state is not necessary to define the
guantum absentminded driver model, the key issue is the coherence
of quantum evolution



