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About quantum mechanics
I think it is safe to say that no 

one understands quantum 

mechanics. Do not keep saying 

to yourself, if you can possibly 

avoid it, “But how can it be like 

that?” because you will get 

“down the drain” into a blind 

alley from which nobody has yet 

escaped. Nobody knows how it 

can be like that.

- Richard Feynman

Richard Feynman (1918-1988)

Those who are not shocked 

when they first come across 

quantum mechanics cannot 

possibly have understood it.

- Niels Bohr



Our plan

• Quantum computing

• Equilibria and correlated equilibria in game

theory

• EWL approach to quantum game theory

• Pareto efficiency of quantum mixed

equilibria

• Quantum absentminded driver

• IBM Q simulations



Quantum computing advantages

Quantum Technologies. Market and Technology Report 2020. Yole Developement

In general, a quantum computer with 𝑛 qubits

can be in any superposition (as Schrodinger’s

cat) of up to 2𝑛 different states. This compares

to a normal computer that can only be in one of 

these 2𝑛 states at any one time.



Quantum computing advantages

Quantum Technologies. Market and Technology Report 2020. Yole Developement

This two properties confer a 

sort of parallelism to a QC and 

bring the freedom to program 

designers, to do better than

classical equivalents.
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Quantum public investments

Quantum Technologies. Market and Technology Report 2020. Yole Developement

More than $16B worldwide



Quantum Technologies. Market and Technology Report 2020. Yole Developement

Quantum computing aplications



Physical qubits roadmap

Quantum Technologies. Market and Technology Report 2020. Yole Developement



Alvin Roth

Nobel prizes for applications of GT to economics:

1994 Nash, Harsanyi, Selten “for their pioneering analysis of 
equilibria in the theory of non-cooperative games”

2005 Aumann i Schelling “for having enhanced our understanding 
of conflict and cooperation through game-theory analysis”

2007 Leonid Hurwicz, Eric Maskin i Roger Myerson „for having laid 
the foundations of mechanism design theory”

2012 Alvin Roth, Lloyd Shapley „for the theory of stable allocations 
and the practice of market design”.

2020 Raul Milgrom, Robert Wilson "for improvements to auction 
theory and inventions of new auction formats."

Thomas 

ShellingLeonid Hurwicz

Game theory and economics

Lloyd Shapley

2001 “Beatiful mind” 
movie about Nash

John Nash

Oskar Morgenstern 

i John von Neumann

Reinhard 

Selten

Paul Milgrom Robert Wilson

Robert Aumann

„Theory of Games and Economic Behaviour” 

J. von Neumann and O. Morgenstern 1944



We consider two player games

𝐺 = 𝑁, 𝑆𝑋 𝑋𝜖𝑁, 𝑃𝑋 𝑋𝜖𝑁

where:

𝑁 = 𝐴, 𝐵 is the set of players

𝑆𝐴 = 𝐴0, 𝐴1 , 𝑆𝐵 = 𝐵0, 𝐵1 are possible pure strategies

𝑃𝑋: 𝑆𝐴 × 𝑆𝐵 → 𝑣𝑖𝑗
𝑋 𝜖 ℝ 𝑖, 𝑗 = 0,1}, 𝑋 = 𝐴, 𝐵, are payoff functions, 

represented by the game bimatrix

𝑣00
𝐴 , 𝑣00

𝐵 𝑣01
𝐴 , 𝑣01

𝐵

𝑣10
𝐴 , 𝑣10

𝐵 𝑣11
𝐴 , 𝑣11

𝐵

Let

Δ 𝑆𝐴 × 𝑆𝐵 = σ𝑖,𝑗=0,1 𝜎𝑖𝑗𝐴𝑖𝐵𝑗 𝜎𝑖𝑗 ≥ 0,σ𝑖,𝑗=0,1𝜎𝑖𝑗 = 1

be the set of probability distributions over 𝑆𝐴 × 𝑆𝐵

Games and probability distributions



If the set of probability distributions can be factorized

𝜎00 𝜎01
𝜎10 𝜎11

= 
𝜎𝐴𝜎𝐵 𝜎𝐴 1 − 𝜎𝐵

1 − 𝜎𝐴 𝜎𝐵 1 − 𝜎𝐴 1 − 𝜎𝐵

they define mixed strategies 𝜎𝐴, 𝜎𝐵𝜖 0,1 . 

The mixed classical game is

𝐺𝑚𝑖𝑥 = 𝑁, ΔS𝐴, ΔS𝐵 , ΔP𝐴, ΔP𝐵

where Δ(𝑆𝑋) = 𝜎𝑋𝑋0 + 1 − 𝜎𝑋 𝑋1 0 ≤ 𝜎𝑋 ≤ 1} ≡ [0,1].

Mixed strategies form a subset of all probability distributions

ΔS𝐴 × ΔS𝐵 ⊂ Δ 𝑆𝐴 × 𝑆𝐵

The pair of strategies 𝜎𝐴
∗, 𝜎𝐵

∗ 𝜖 ΔS𝐴 × ΔS𝐵 is a Nash equilibrium

iff ΔP𝐴 𝜎𝐴
∗, 𝜎𝐵

∗ ≥ ΔP𝐴 𝜎𝐴, 𝜎𝐵
∗ and  ΔP𝐵 𝜎𝐴

∗, 𝜎𝐵
∗ ≥ ΔP𝐵 𝜎𝐴

∗, 𝜎𝐵 ,

for each 𝜎𝑋 𝜖 ΔS𝑋, 𝑋 = 𝐴,𝐵

Mixed strategies and Nash equilibria
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The executor performance 
depends on the 

goalkeeper's strategy

executor left executor right

goalkeeper to the right



A pair of strategies 𝜎𝐴, 𝜎𝐵 𝜖 𝑆 is not Pareto optimal in 𝑆 if there exists 

another pair 𝜎𝐴′, 𝜎𝐵′ 𝜖 𝑆 that is better for one of the players and not 

worse for the other. Otherwise 𝜎𝐴, 𝜎𝐵 𝜖 𝑆 is called Pareto optimal.

Probability distribution 𝜎𝑖𝑗 𝑖,𝑗=0,1
over set of strategies (𝐴𝑖 , 𝐵𝑗)𝑖,𝑗=0,1

of the game 𝐺 is a correlated equilibrium iff

σ𝑗=0,1𝜎𝑖𝑗 𝑣𝑖𝑗
𝐴 ≥ σ𝑗=0,1𝜎𝑖𝑗 𝑣−𝑖𝑗

𝐴 and  σ𝑗=0,1 𝜎𝑗𝑖 𝑣𝑗𝑖
𝐵 ≥ σ𝑗=0,1𝜎𝑗𝑖 𝑣𝑗(−𝑖)

𝐵

where −𝑖 ≠ 𝑖 is the index of the remaining strategy.

Pareto optimality

and correlated equilibria



Efficiency of selected classical games
prisoner’s

dilemma
Bob

𝐵0 𝐵1
A

lic
e 𝐴0 (3, 3) (0, 5)

𝐴1 5, 0 (1, 1)

battle of the 

sexes
Bob

𝐵0 𝐵1

A
lic

e 𝐴0 (3, 2) (1, 1)

𝐴1 0, 0 (2, 3)

NE

NE

NE

NE

ΔS𝐴 × ΔS𝐵
mixed strat.

Δ 𝑆𝐴 × 𝑆𝐵
probab. distrib.

CE

CE 𝜎𝐶𝐸 =
Τ1 2 0
0 Τ1 2

𝜎𝐶𝐸 =
0 0
0 1

3𝜎00 ≥ 𝜎01, 𝜎00 ≥ 3𝜎10
3𝜎11 ≥ 𝜎01, 𝜎11 ≥ 3𝜎10

𝜎00 = 𝜎01 = 𝜎10 = 0
𝜎11 = 1

Correlated

equilibrium

Correlated

equilibrium



chicken Driver B
D

ri
v
e
r 

A 𝐵0 𝐵1

𝐴0 (0, 0) (0, 1)

𝐴1 1, 0 (−10,−10)

chicken 2 Player B

P
la

y
e
r 

A 𝐵0 𝐵1

𝐴0 (4, 4) (1, 5)

𝐴1 5, 1 (0, 0)

NE

NE

CE

CE

Efficiency of selected classical games

𝜎𝐶𝐸 =
0 Τ1 2
Τ1 2 0

𝜎𝐶𝐸 =
Τ1 3 Τ1 3
Τ1 3 0

𝜎00 ≤ 𝜎01, 𝜎00 ≤ 𝜎10
𝜎11 ≤ 𝜎01, 𝜎11 ≤ 𝜎10

𝜎00 ≤ 10𝜎01, 𝜎00 ≤ 10𝜎10
10𝜎11 ≤ 𝜎01, 10𝜎11 ≤ 𝜎10

Correlated

equilibrium

Correlated

equilibrium



The standard quantum game in Eisert-Wilkens-Lewenstein quantization

scheme is: (Eisert et al, PRL 83, 3077 (1999)

Γ𝐸𝑊𝐿 = 𝑁, 𝑈𝑋 𝑋𝜖𝑁 , Π𝑋 𝑋𝜖𝑁

where:

𝑁 = 𝐴, 𝐵 is the set of players

The unitary transformations 𝑈𝐴 = 𝑈 𝜃𝐴, 𝛼𝐴, 𝛽𝐴 , 𝑈𝐵 = 𝑈 𝜃𝐵 , 𝛼𝐵 , 𝛽𝐵

𝑈 𝜃𝑋, 𝛼𝑋 , 𝛽𝑋 =
𝑒𝑖𝛼𝑋 𝑐𝑜𝑠

𝜃𝑋
2

𝑖𝑒𝑖𝛽𝑋 𝑠𝑖𝑛
𝜃𝑋
2

𝑖𝑒−𝑖𝛽𝑋 𝑠𝑖𝑛
𝜃𝑋
2

𝑒−𝑖𝛼𝑋 𝑐𝑜𝑠
𝜃𝑋
2

,

𝜃𝑋 ∈ 0, 𝜋 , 𝛼𝑋, 𝛽𝑋 ∈ 0,2𝜋 , 𝑋 = 𝐴, 𝐵

are quantum strategies. 

Quantum game preliminaries



The quantum EWL approach to the game is

where: ۧȁ00 is the initial state

መ𝐽 =
1

2
( መ𝐼 + 𝑖𝜎𝑥⨂𝜎𝑥), 𝐽

† are the entangling, disentangling operators,

𝑈𝑋 𝜃𝑋, 𝛼𝑋, 𝛽𝑋 =
𝑒𝑖𝛼𝑋 cos

𝜃𝑋

2
𝑖𝑒𝑖𝛽𝑋 sin

𝜃𝑋

2

𝑖𝑒−𝑖𝛽𝑋 sin
𝜃𝑋

2
𝑒−𝑖𝛼𝑋 cos

𝜃𝑋

2

, 𝑋 = 𝐴, 𝐵, 

EWL approach

ቚ𝜓𝑓 = σ𝑖,𝑗=0,1𝑝𝑖𝑗 ۧȁ𝑖𝑗 , is the final state defining the game payoffs



Π𝑋: 𝑆𝑈(2) × 𝑆𝑈(2) → ℝ are payoff functions defined by: 

Π𝑋 𝑈𝐴, 𝑈𝐵 , 𝛾 = σ𝑘,𝑙=0
1 𝑣𝑘,𝑙

𝑋 Ψ𝑘,𝑙(𝛾) 𝑈𝐴⨂𝑈𝐵 Ψ(𝛾)
2
, 𝑋 = 𝐴, 𝐵

ൿȁΨ𝑘,𝑙(𝛾) = 𝐶𝑘⨂𝐶𝑙 ۧȁΨ(𝛾)

In case of a fully quantum case 𝛾 = 𝜋/2 :

Π𝑋 𝑈𝐴, 𝑈𝐵 = σ𝑘,𝑙=0,1 ȁ𝑝𝑘𝑙ȁ
2 𝑣𝑘𝑙

𝑋 ,   𝑋 = 𝐴, 𝐵, 

where:

Quantum game payoffs

 1 

|𝑝00|
2 = cos

𝜃𝐴
2
cos

𝜃𝐵
2
cos(𝛼𝐴 + 𝛼𝐵) + sin

𝜃𝐴
2
sin

𝜃𝐵
2
sin(𝛽𝐴 + 𝛽𝐵), 

|𝑝01|
2 = cos

𝜃𝐴
2
sin

𝜃𝐵
2
cos(𝛼𝐴 − 𝛽𝐵)+ sin

𝜃𝐴
2
cos

𝜃𝐵
2
sin(𝛼𝐵 − 𝛽𝐴), 

|𝑝10|
2 = cos

𝜃𝐴
2
sin

𝜃𝐵
2
sin(𝛼𝐴 − 𝛽𝐵)+ sin

𝜃𝐴
2
cos

𝜃𝐵
2
cos(𝛼𝐵 − 𝛽𝐴), 

|𝑝11|
2 = cos

𝜃𝐴
2
cos

𝜃𝐵
2
sin(𝛼𝐴 + 𝛼𝐵) − sin

𝜃𝐴
2
sin

𝜃𝐵
2
cos(𝛽𝐴 + 𝛽𝐵). 



Quantum Pauli strategies

Strategies 𝑈𝐴 = 𝑈 𝜃𝐴, 𝛼𝐴, 𝛽𝐴 and 𝑈𝐵 = 𝑈 𝜃𝐵 , 𝛼𝐵, 𝛽𝐵 , 

𝑈𝑋 𝜃𝑋, 𝛼𝑋, 𝛽𝑋 =
𝑒𝑖𝛼𝑋 cos

𝜃𝑋

2
𝑖𝑒𝑖𝛽𝑋 sin

𝜃𝑋

2

𝑖𝑒−𝑖𝛽𝑋 sin
𝜃𝑋

2
𝑒−𝑖𝛼𝑋 cos

𝜃𝑋

2

, are generated by Pauli strategies:

ෞ𝜎𝑥 =
0 1
1 0

, ෞ𝜎𝑦 =
0 −𝑖
𝑖 0

,ෞ𝜎𝑧 =
1 0
0 −1

.

𝑃0 = 𝑈 0,0, 𝛽 =
1 0
0 1

,

𝑃𝑥 = 𝑈 𝜋, 𝛼, 𝜋 =
0 −𝑖
−𝑖 0

,

𝑃𝑦 = 𝑈 𝜋, 𝛼, 𝜋/2 =
0 −1
1 0

,

𝑃𝑧 = 𝑈 0, 𝜋/2, 𝛽 =
𝑖 0
0 −𝑖

.

are Pauli matrices

where



B
A

𝑐𝑜𝑠2
𝜃𝐵
2

𝑠𝑖𝑛2
𝜃𝐵
2

𝑐𝑜𝑠2
𝜃𝐴
2

(𝑎00, 𝑏00) (𝑎01, 𝑏01)

𝑠𝑖𝑛2
𝜃𝐴
2

(𝑎10, 𝑏10) (𝑎11, 𝑏11)

Classical limit of the quantum game

Le us assume 𝛼 = 𝛽 = 0, in this case

𝑈 𝜃, 0,0 = cos
𝜃

2
መ𝐼 + 𝑖 sin

𝜃

2
𝜎𝑥

is equivalent to the classical mixed strategy

and the payoffs are

$𝐴(𝑩) = 𝑎(𝑏)00 cos
2
𝜃𝐴
2
cos2

𝜃𝐵
2
+ 𝑎(𝑏)01 cos

2
𝜃𝐴
2
sin2

𝜃𝐵
2

+𝑎(𝑏)10 sin
2
𝜃𝐴
2
cos2

𝜃𝐵
2

+ 𝑎(𝑏)11 sin
2
𝜃𝐴
2
sin2

𝜃𝐵
2

𝜃𝐵 = 0 𝜃𝐵 = 𝜋



EWL with Frąckiewicz-Pykacz

parameterization

Let us restrict the set of quantum strategies to 

𝑈𝑋 𝜃𝑋, 𝜙𝑋 =
𝑒−𝑖𝜙𝑋 cos

𝜃𝑋
2

−𝑒−𝑖𝜙𝑋 sin
𝜃𝑋
2

𝑒𝑖𝜙𝑋 sin
𝜃𝑋
2

𝑒𝑖𝜙𝑋 cos
𝜃𝑋
2

𝑃0 = 𝑈 0,0 =
1 0
0 1

,

𝑃𝑥 = 𝑈 𝜋,
𝟑𝜋

𝟐
=

0 −𝑖
−𝑖 0

,

𝑃𝑦 = 𝑈 𝜋, 0 =
0 −1
1 0

,

𝑃𝑧 = 𝑈 0,
𝟑𝜋

𝟐
=

𝑖 0
0 −𝑖

.

• In this parameterization, there are Nash equilibria in pure strategies

which do not exist for SU(2) parameterization

• F-P parametrization is invariant with respect to strongly isomorphic

transformation of input games



Quantum game in Pauli strategies

The payoff matrix of Pauli strategies in the EWL scheme

Player B

𝑃0 𝑃𝑥 𝑃𝑦 𝑃𝑧

P
la

y
e

r 
A

𝑃0 a00, b00 a01, b01 a10, b10 a11, b11

𝑃𝑥 a10, b10 a11, b11 a00, b00 a01, b01

𝑃𝑦 a01, b01 a00, b00 a11, b11 a10, b10

𝑃𝑧 a11, b11 a10, b10 a01, b01 a00, b00

one can also construct mixed Pauli strategies defined by 

quadruples of coefficients:

Δ𝑈𝑋 ≡ Δ(𝑈𝑋) = σ𝛼=0,𝑥,𝑦,𝑧 𝜎𝛼
𝑋𝑃𝛼 0 ≤ 𝜎𝛼

𝑋; σ𝛼=0,𝑥,𝑦,𝑧 𝜎𝛼
𝑋 = 1}, 𝑋 = 𝐴, 𝐵,



Quantum Mixed Equilibria
prisoner’s

dilemma
Bob

𝐵0 𝐵1

A
lic

e 𝐴0 (3, 3) (0, 5)

𝐴1 5, 0 (1, 1)

battle of the 

sexes
Bob

𝐵0 𝐵1

A
lic

e 𝐴0 (3, 2) (1, 1)

𝐴1 0, 0 (2, 3)

NE

NE

NE

NE

ΔS𝐴 × ΔS𝐵

Δ 𝑆𝐴 × 𝑆𝐵

CE

CE

QME

𝜎𝐴 =
1

2
0,0

1

2
, 𝜎𝐵 = (0,

1

2
,
1

2
, 0) 𝜎𝐴 = 𝜎𝐵 =

1
2 0,0

1
2

QME



chicken Driver B
D

ri
v
e
r 

A 𝐵0 𝐵1

𝐴0 (0, 0) (0, 1)

𝐴1 1, 0 (−10,−10)

chicken 2 Player B

P
la

y
e
r 

A 𝐵0 𝐵1

𝐴0 (4, 4) (1, 5)

𝐴1 5, 1 (0, 0)

NE

NE

CE

CE

QME

𝜎𝐴 =
1

2
0,0

1

2
, 𝜎𝐵 = (0,

1

2
,
1

2
, 0)

QME

QME

QME

𝜎𝐴 =
1

2
, 0,

1

2
, 0 , 𝜎𝐵 = (

1

2
,
1

2
, 0,0)

Quantum Mixed Equilibria



Quantum absentminded driver 

on IBM-Q

P. Frąckiewicz, K. Rycerz, M. Szopa;
Quantum absentminded driver problem revisited,
subm. to Quantum Inf. Processing
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1. Correlated equilibria significantly improve paretoefficiency of Nash

equilibria and they can be obtained in quantum games

2. Quantum games give players new strategies not available in classic 

games and strongly depend on the parameterization used

3. Nash equilibria of quantum in mixed strategies are close to 

paretoefficiency of correlated equilibria

4. FP parameterization provides a strong isomorphism of the quantum 

game and gives the same Nash equilibria in mixed strategies as full 

SU(2) parameterization of EWL

5. The entanglement of initial state is not necessary to define the 

quantum absentminded driver model, the key issue is the coherence

of quantum evolution

Conclusions


